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Outer Joins and Filters for Instantiating Objects
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Abstract— One of the approaches for integrating object-
oriented programs with databases is to instantiate objects
from relational databases by evaluating view queries. In that
approach, it is often necessary to evaluate some joins of the
query by left outer joins to prevent information loss caused
by the tuples discarded by inner joins. It is also necessary to
filter some relations with selection conditions to prevent the
retrieval of unwanted nulls.

The system should automatically prescribe joins as inner or
left outer joins and generate the filters, rather than letting them
be specified manually for every view definition. We develop such
a mechanism in this paper. We first develop a rigorous system
model to facilitate the mapping between an object-oriented
model and the relational model. The system model provides a
well-defined context for developing a simple mechanism.

The mechanism requires only one piece of information from
users: null options on an object attribute. The semantics of
these options are mapped to non-null constraints on the query
result. Then the system prescribes joins and generates filters
accordingly. We also address reducing the number of left
outer joins and the filters so that the query can be processed
more efficiently.

Index Terms—Complex object, filter, outer join, relation stor-
age, view.

[. INTRODUCTION

NE of the approaches for integrating object-oriented pro-
()grams with relational databases is to instantiate objects
from relational databases through views [7]-[9], [10]-[15].
A view is defined by a relational query and a function for
mapping between object attributes and relation attributes. The
query is used to materialize the necessary data into a relation
from database, and the function is used to restructure the
materialized relation into objects. This approach provides an
effective mechanism for building object-oriented applications
on top of relational databases.

In instantiating objects, some particular conditions arise that
are not so common in traditional relational database operations.
First of all, as will be shown in Section 11I-B, it often happens
that we lose tuples that should be retrieved from databases if
we allow only inner joins. Hence, it becomes necessary to
evaluate some joins of the query by outer joins [27]. Outer
joins do not discard any tuple in the joined relations by
inserting null tuples in place of where a matching tuple would
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have been inserted if there were one. In particular, we need
unidirectional outer joins such as left outer joins. On the other
hand, we sometimes retrieve unwanted nulls from nulls stored
in databases, even if there is no null inserted during query
processing. In this case, it is necessary to filter some relations
with selection conditions that eliminate the tuples containing
null attributes in order to prevent the retrieval of unwanted
nulls.

It is desirable to make the system to generate those left
outer joins and filters as needed rather than requiring that a
programmer specify them manually as part of the query for
every view definition. We develop such a mechanism in this
paper.

Without optimization, declarative approaches such as SQL
queries and views are not practical. However, optimization of
queries with outer joins has rarely been treated. Since left outer
joins are not symmetric, they inhibit a query optimizer from
attempting to reorder joins for more efficient query processing.
Furthermore, application of non-null filters is not free. It incurs
the cost of evaluating the corresponding selection predicates
on a base relation. We show that these two operators can be
avoided without affecting the query result for frequent cases
we will define in this paper.

We made the following contributions in the context of
instantiating objects from relational databases through views.

» Two key operators—a left outer join and a non-null
filter—for preventing information loss and the retrieval
of unwanted information.

» A simple mechanism for specifying those two operators in
a relational view query, given a system model we define.
The system model is easily implementable in existing
systems.

» Optimization by reducing the number of the two operators
without affecting query results.

II. BACKGROUND FRAMEWORK

A. Integration of Object-Oriented Programs and Databases

The desire for integrating object-oriented programs with
databases has been increasing recently. This integration en-
ables applications working in object-oriented environment to
have shared, concurrent access to persistent storage. Examples
are the engineering applications such as computer-aided de-
sign and computer-aided software engineering. These are not
well supported by conventional databases such as relational
databases.

1041-4347/94304.00 © 1994 1EEE
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We distinguish two alternative approaches to the integration
of objects and databases: the direct object storage approach
and the indirect base relation storage approach. In the object
storage approach, an object-oriented model is used uniformly
for applications and persistent storage {1]-{3], [5], [6]; objects
are retrieved and stored as objects. In the relation storage
approach, an object-oriented model is used for the applications
while a relational storage model is used for persistent storage
[4], [7]-[15], and objects are retrieved by evaluating queries
to databases.

The relation storage approach incurs the overhead of map-
ping between different models [10], [16] but is useful for large
databases since the relation storage approach supports sharing
of different user views better than the object storage approach.
Direct storage of objects is simple but inhibits sharability
[10]. For example, let us assume two users define Em-—
ployee objects differently as Employee(name, salary)
and Employee(name, department) respectively. In the
object storage approach, the two Employee objects are stored
separately. To provide sharing requires a separate mechanism
for identifying the owners. In the relation storage approach,
however, this problem does not occur because the information
to support the two Employee objects is stored in a single re-
lation Employee(name, salary, department), and their
owners are distinguished by the database view mechanism.

B. Two Perspectives of the Relation Storage Approach

We observed two different perspectives within the relation
storage approach: object centered [4], [7]1-[9] and relation
centered [10]-[15]. In object-centered perspective, relation
schemas are generated from given object schemas, i.e., types
and their hierarchy. Relations are the destination for storing
objects, and objects are decomposed into relations using the
concept of normalization. On the other hand, in relation-
centered perspective, object schemas are defined from given
relation schemas. Relations are the source for generating
objects, and objects are composed from relations. The com-
position of objects is useful for building object-oriented ap-
plications on top of existing relational databases'. The two
perspectives may look like the two sides of the same coin, but
they differ operationally. Fig. 1 shows the two perspectives.
In Fig. I(a), the Project-manager type is mapped to
the Project-manager relation. There exists a separate
relation for each corresponding object type. In Fig. 1(b), there
does not exist a separate Project-manager relation in
the given database. Rather, the Project-manager type is
defined as an abstraction through views, such as defining a
join between the Employee relation and Project relation
along the manager-ssn foreign key. The join retrieves only
the employees that are managing one or more projects. Let
us consider the Project-manager as a derived relation of
the Employee and Pro ject relations. Note that the derived
relation is analogous to the intensional database (IDB) relation
[20], [21] used in the integration of the logic-based model

''We cannot throw away the relational data model in a decade. Remember
that the IMS hierarchical data model implementation is still prevalent while
we call the relational model “conventional,”

Type Employee Type Employee
lis-a fis-a

Type Project-manager Type Project-manager
Jgenerates Ttdefined-from

Relation Employee(ssn, ...)

Relation Employee(ssn, ...)
Relation Project-manager{ssn, ...) Relation Project(. .., manager-ssn, ...)

(a) (b)

Fig. 1. Two perspectives of the relation storage approach. (a) Object-centered

perspective. (b) Relation-centered perspective.

and relational model [21]-{23]. For example, the IDB relation
of the Project-manager is written as follows using the
notion of Datalog [20].
Project-manager (ssn, ---}: - Employee (ssm )

& Project (---, manager-ssn, ---)

& ssn = manager-ssn.

We use the relation-centered perspective throughout the
discussion in this paper, but the result is applicable to the
object-centered perspective as well.

C. Instantiating Objects from Relations Through Views

Views provide a user-defined subset of a large database.
Thus, as mentioned in Sections II-A and 11-B, views are used
as a tool for providing sharing and abstraction in interfacing
between an object-oriented model and the relational model.
We also want to use the views for instantiating objects from
relations. To achieve this, views should provide mapping
between heterogeneous structures of the two models. This
mapping information is used by a NEST [24]-[26] operator to
restructure a query result into objects. In [17] and [18] appears
a description of different methods of implementing the NEST
operator. Our concern in this paper is only the mapping of
attributes.

The mapping is done by linking object attributes to cor-
responding relation attributes. Objects have more complex
structures than relations. For instance, objects support aggrega-
tion hierarchies [34] through an is-part-of relationship.> Hence
objects have a nested structure, which is different from nested
tuples because the type of an attribute can be a reference
to another object. Therefore, given relation attributes, it is
difficult to map the relation attributes to object attributes
without explicitly specified mapping information. We thus
need to extend the views by adding an additional component
for the mapping, that is, an attribute mapping function.

Fig. 2 shows an example of instantiating objects through
such an extended view. The object type defines the structure
of objects to be retrieved from the database. The query part
of the view specifies how to materialize the objects from the
relational database. The join between the Employee relation
and the Child relation has the semantics of nesting, such
as “For each Employee tuple, retrieve the matching tuple
in the Child relation.” The outer relation is called a source
relation, and the inner relation is called a destination relation
in our work. The attribute mapping part of the view shows the

2Objects also support a generalization hierarchy through an is-a relation-
ship, inheriting part of the attributes from parent objects. We regarded the

inherited attributes as well as the local attributes uniformly as belonging to
the objects.
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Datab h /* Underlined attributes are keys. */
Employee(ssn, e_name, salary, dept#)
Deparment(dept#, d_name, manager_ssn}

Child(ssn, c_name, sex, birth_date)

Object Type Employee /* | ] denotes a tuple. */
[name: string, dept: Department,
children: (name: string, birthDate: string]]

View:

¢ Query expressed in relational algebra:

}Employee b Child

ssn=emn

n(ssn,e_name,dcpt#,c_na.me,birthDate
¢ Mapping between object attributes and relation attributes:

— : js-part-of

oyee
> : maps-10

id name t chjldren
id ngme  birthDate
ssn e_name dept# <ssn,c_name> c¢_name birth_date

Fig. 2. An example of instantiating an object type through views.

aggregation hierarchy of object attributes and their mapping to
relation attributes. The mapping is one to one as long as there is
no derived attribute among the object attributes. We use the key
attribute of one of the relations as the source of the oidentifier
(oid). In Fig. 2, the key ssn of the Employee relation
is retrieved to become the oid of the Employee object.
Object id’s are not explicitly defined in the type definition
but are assumed to exist implicitly. The dept attribute of
an Employee object has type Department. We call an
attribute whose type is another object type a reference attribute.
In object-oriented paradigm, a reference is implemented with
the oid of the referenced object. In our framework, the value
of a reference attribute is retrieved from the key of a database
relation that is mapped to the oid of the referenced obiject.
Thus, in Fig. 2 the dept attribute of an Employee object is
retrieved from the dept # of the Department relation®. The
children attribute defines a subobject of the Employee
object, and each subobject has its own attributes—name and
birthDate. Here a subobject is defined as an object that
does not have its own type definition but has its structure
contained in another object, which again may be a subobject
of another object®. Like the Employee object, a children
subobject is assumed to have its oid, but the oid is not actually
retrieved from a database relation. The id’s of the children
subobjects are needed for a different purpose, which will be
discussed in Section V-C.

ITI. PROBLEM FORMULATION

A. The Two Operators

In the introduction, we mentioned the need for two operators
for instantiating objects from relational databases through
views: a left outer join and a non-null filter. A left outer join

3Let us assume there is a type Department whose oid is retrieved from
the dept 4 of the Department relation.

“Do not confuse subobjects with the instances of a subtype in an is-a
hierarchy of object types.

is different from an inner join in that it retrieves null tuples
when there is no matching tuple in the destination relation for a
given source relation. A non-null filter is a selection condition
for eliminating any nulls of an attribute from a base relation’.
Formal definitions of the left outer join and the non-null filter
are as follows.

Definition 3.1: Left Outer Join: Given two relations R and
Ra, a left outer join from R, to Ra, denoted by R; < Rg,
is defined as follows.

R1 > R2 = (Rl D Rz) U((Rl — HRl(Rl o<1 Rg)) X A) (1)

where < denotes an inner join, Hm(Rl <1 R2) denotes the
projection of R; ba Ry on the attributes of Ry, and A denotes
a null tuple consisting of nulls for all attributes of Ry. In other
words, I, 2‘;?’—31?2 produces the following set of tuples.

{< ty,82 > |t1 € Ry Ata € Ra Aty.Afty.B}U

{< t1,A > \t1 € RiA Atg(tQ e Ra A tl.Agtg.B)} 2)

where # denotes a comparison operator, ie., § € {<,<, >,
>, =,#}.

For the rest of this paper, we use a small size join symbol
() to denote a join which can be (has not yet been determined
to be) either an inner join (<) or a left outer join ().

Definition 3.2: Non-null Filter: A non-null filter is a con-
junction of predicates applicable to a base relation I, defined
as follows.

RA; #null AR Ay #null A---ARA; #null  (3)

where A1, As,---, A; are the attributes of R that are not
allowed to have nulls.

B. Motivation

Why do we need left outer joins and non-null filters? Objects
are identified by their identifiers (0id’s) only. In other words,
an object exists even if all of its attributes are nulls as
long as it has an oid. Let us consider the objects of type
Employee shown in Fig. 2. An Employee object exists
only if it has its oid retrieved from the ssn of the Employee
relation. Assuming that the Employee object allows null for
its children attribute, what will happen if the join between
Employee relation and Child relation is evaluated by an
inner join? Any employee tuple that has no matching tuple
in the Child relation will be discarded. In other words, any
employee without children will not be retrieved. Therefore,
it is certain that we must evaluate the join by an outer join
to prevent the loss of employees that do not have children.
Furthermore, what we need is not a bilateral outer join but a
unilateral outer join, because we are not interested in retrieving
a Child tuple that has no matching tuple in the Employee
relation, that is, a child without a parent. Therefore, a left outer
join is adequate assuming that the source, here the Employee,
relation is the left-hand side operand of the join. We assume
the source relation is always on the left-hand side of a join
and thus use only left outer joins for the rest of this paper.

% A base relation is the relation defined by the relation schema of a database,
neither a view nor an intermediate relation.
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Now let us assume the Employee objects prohibit nulls for
the dept attribute since a department affiliation is required of
every employee, while in the relational database a department
affiliation is not required. As mentioned in Section II-C, the
dept attribute is retrieved from the dept # of the Employee
relation. The join between the Employee relation and the
Child relation is immaterial to the retrieval of dept#
attribute. Rather, nulls of the dept# attribute stored in the
tuples of the relation Employee should not be retrieved.
Therefore, we must filter the Employee relation with a
selection condition dept# # null. We call this selection
condition a non-null filter.

We see from the above examples that we frequently need
left outer joins [27] to prevent the loss of wanted objects and
non-null filters to prevent the retrieval of unwanted nulls.

Why do we want the system to do it? Null-related seman-
tics of object types are hard to understand and hence likely
to induce errors. For example, the Employee type definition
shown in Fig. 2 does not distinguish between the semantics
of “employees and their zero or more children” and the
semantics of “employees with at least one child.” A left outer
join is needed for the former, while an inner join is needed
for the latter. The distinction is entirely the programmer’s
responsibility. Even if the semantics are clear, it is an effort
for the programmer to determine the left outer joins and
non-null filters given an object type and the corresponding
view, especially if the view defines many joins. Therefore
mechanization of the process is useful.

Why do we want to reduce the number of left outer joins and
non-null filters? The view query is processed more efficiently
if we can eliminate a non-null filter, K.A # null, without af-
fecting the query result and thus avoid evaluating unnecessary
selection conditions. Sometimes it is known at the semantic
level that the column A of a relation R contains no null. An
example is when A is the key of R and the entity integrity
[30] is preseved.

The query also becomes more efficient if we reduce the
number of left outer joins and still retrieve the same result.
Sometimes left outer joins produce the same tuples as inner
joins. For example, in Fig. 2, if every employee has one or
more children, then the same tuples are produced by either join
method. We know this fact at the semantic level, provided
that the system enforces the referential integrity [30] from
Emplcyee.ssn to Child.ssn. As another example, let
us consider the following directed join graph.

Ry — RyX% Ry — R,

where the join from Ry to Rj3 is a left outer join and the
others are inner joins. If it is known there always exists a
matching tuple of Rj for every tuple of R, then the result of
Ry < Ry xa Ry <1 Ry is the same as 2 b o b Ry < Ry.
Now, if we evaluate the join as an inner join, then the
optimizer considers the three joins and will choose the most
efficient order of joins. Let us assume the join order becomes
Ry — R3 — Ry — R, in the optimal plan. On the other hand,
if we evaluate the join as a left outer join, the query optimizer
cannot consider reversing the order of Ry pa Ry and thus
cannot obtain the same optimal plan. In general, converting a

left outer join to an inner join allows the query optimizer to
deal with a larger number of joins. This increases the number
of alternative plans but will certainly never generate a less
optimal plan than when left outer joins are evaluated as such
and, therefore, cannot be reordered.

C. Problem Statements

Our objective is thus to develop a mechanism for the system
to decide whether the joins of a query should be evaluated by
inner joins or left outer joins when objects are instantiated from
relational databases through views. In addition, the system
decides which relations should be filtered through non-null
filters. For reasons of efficiency, the number of left outer joins
and non-null filters should be reduced whenever possible.

D. Our Approach

The heterogeneity of the object-oriented model and the
relational model causes several difficulties in mapping between
the two models [31]. Hence we cannot expect a simple solution
without a well-defined system model. The system model
should satisfy the following criteria.

« It provides the context in which we can develop a simple
solution to the problem.

« It is based on a standard model and can be easily
implemented in many existing systems.

Given the system model, we develop a mechanism for
solving the problem. We use only one parameter that users
should provide to the system. It is a non-null option on the
object attribute, as will be explained in Section IV-A. Users
do not even have to know what a left outer join is. To
prevent losing nonmatching tuples when nulls are allowed (by
default), all joins of a query are initialized to left outer joins.
The semantics of the non-null options are interpreted as non-
null constraints® on object attributes, and they are mapped to
corresponding non-null constraints on the query result. Then
we replace some left outer joins by inner joins and add non-
null filters to some relations accordingly. Finally, the number
of left outer joins and non-null filters are reduced using the
integrity constraints of the data model.

In the rest of this paper we first develop a rigorous system
model to facilitate the mapping between objects and relations
in Section I'V. The mechanism is developed in Section V, and
the conclusion follows in Section VI.

IV. SYSTEM MODEL

The system model has three elements: an object type model,
a view model, and a data model. The object type model defines
the structure of objects. No object type model has gained
universal acceptance [32], [33]. Therefore we define a model
which is common to many existing object-oriented models [1],
[4]-[7]. Note that we do not (yet) deal with methods but focus
on object structures. The data model is the relational model
proposed by Codd [19]. The view model contains a relational

5These constraints require the existence of an object attribute given the oid
of an object. We would call this constraint an existence constraint if this term

were not already used in [20] to mean the same concept as the referential
integrity.



Relation Employee | (ssn) <= (id) Object Employee
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Relation Employee
SSIXmanager-ssi

Relation Project

(ssn) A, (id) Object Project-manager

(b)

Fig. 3. The concept of a pivot relation.

query’ and defines a mapping between objects and relations.
We restrict the query to an acyclic select-project-join query.

A. Object Type Model

Many existing object-oriented models support aggregation
through nested structures and references. For example, the
Employee object of Fig. 2 is an aggregation of name,
dept, and children where dept is a reference to a
Department object and children is an aggregation of
name and birth Date. The children attribute defines
an embedded substructure of the Employee object. Thus our
object type has a similar structure to that of the complex object
[35]-1401.

We use value-oriented oid’s [44], [45] and retrieve them
from the keys of relations®. Those relations providing oid’s
are called pivor relations [11]1-{13]. As discussed in Section
[I-B, an object is mapped semantically to a derived relation
rather than a base relation if no base relation provides the
same semantics as the object type. Fig. 3 illustrates these
concepts. In Fig. 3(a), the Employee relation is the pivot
relation for the Employee object and provides its key ssn
as the oid. Figure 3(b) shows the derived relation Project-
manager of Fig. 1, which becomes the pivot relation for
the Project-manager object. It is defined by Employee

>4 Project, and the key ssn of Employee in

ssn=manager—ssn
the join result is retrieved as the oid.

We do not consider derived attributes for our object type.
Derived attributes have no direct mapping to rclation at-
tributes and, therefore, are computed separately from relation
attributes.

An object type is defined formally as a tuple of attributes,
[A1, A, -+, X1, Xo,-- ], where each A, is a simple attribute
and each X; is a complex attribute. Each attribute is either
local to the object or inherited from its parent, and we
consider both the local and inherited attributes as defined in
an object type. An attribute is described in Backus-Naur Form
as follows.

"We do not assume the usage of any specific query language for our work.

8Tuple identifiers are usable as well, Otherwise we assume the system
maintains a mapping between system-generated oid’s and the keys of the
corresponding relations.
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Type Programmer
[ name: string non-null, dept: Department non-null, salary: integer,
manager: Employee, task: string,
Project: [ title: string non-null, sponsor: string, leader: string,
depart: Department non-null | }

Fig. 4. An example object type.

A simple attribute has an atomic value or a set of atomic
values. It is either internal or external to the object. An internal
attribute has a primitive data type such as string, integer, etc.,
while an external (or reference) attribute has another object
type as its data type. The value of an external attribute is
the oid of the referenced object. A complex attribute defines
a subobject or a set of subobjects by embedding its type
definition within the object type. In the same way as an oid
is mapped from the key of a pivot relation, a subobject also
has an associated oid that is mapped from the key of a base
relation. However, the oid of a subobject is not retrieved while
the oid of its (super)object is retrieved from the key of a pivot
relation®.,

We need a way of telling the system whether the value of
an object attribute is allowed to be null or not. This is done
by attaching a non-null option to an object attribute. This
option deliberately declares that a null value is not allowed
for the attribute. It is equivalent to specifying the constraint of
minimum cardinality > 0 on the attribute'”. Attributes without
non-null options are allowed to have null values by default.

An example is shown in Fig. 4. The Project attribute
defines its own attributes and becomes a subobject of the
Programmer object. It has its oid mapped from the key of
a pivot relation in the same way the Programmer object
does. However, only the id’s of the Programmer objects are
actually retrieved. This Programmer object example will be
used throughout the rest of this paper.

Given an object type, we can build a tree consisting of its
object attributes. We call such a tree an O-tree and define it
as follows.

Definition 4.1: The O-tree of an object O is a tree that has
the following properties.

« Its root is labeled by O.

« A leaf is labeled by a simple attribute of the object O.

* An intermediate node (nonleaf) is labeled by a complex

attribute of the object O.

An example of an O-tree is shown in Fig. 5 for the
Programmer type.

Here we introduce two functions directly derivable from an
object type: object set (Oset) and object chain (Ochain). These
two functions are used to facilitate mapping between objects
and relations.

9 A subobject of an object is not a stand-alone object because it has no oid.
{0Many commercial tools for building object-oriented system applications,
KEE [41]-[43] for example, support this option.

attribute ::= simple attribute
simple attribute ::= internal attribute |
complex attribute ::= [ attribute,

| complex attribute
external attribute
attribute, ---]
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ammcr

oid name dept salary manager task Prgject

oid title sponsor leader depart

Fig. 5. The O-tree of the Programmer object type.

2esman mam pyigupy 8} L ~ef ) P Ry P
4.2: Given an object O, Oset(O) is defined as a

Definition 4.2: S
function returning the set of the root of the O-tree and all of
its nonleaf descendents.

For example, Oset(Programmer) returns {Programmer,
Project}. Note each element of an Oset has its oid mapped
to the key of a pivot relation.

Definition 4.3: Given an object O and an attribute sg of
the object O, Ochain(O, sy) is defined as a function returning

of nad

ag from tha rant () of tha ) _tr €
O1 NIOGES 110N i 7001 (/) 1 uil U u

the chain tree
labeled 50, i.e., ()O] ce ~()n~50-

For example, Ochain(Programmer, title) returns Pro-
grammer.Project.title and Ochain(Programmer,

Project) returns Programmer.Project.

B. Data Model

Integrity constraints [28]—[30] are a part of the data model.
Two kinds of integrity constraints are used in our work:
referential integrity constraints and entity integrity constraints.
As mentioned in Section 111-B, these integrity constraints are
useful to reduce the number of left outer joins and non-null
filters.

The referential integrity constraint is defined as follows.

Definition 44: A referential integrity constraint from R.A
to S.B requires that if R.A is not null then there exists a
matching value of S.B. That is:

Va € R.A(a = null v 3b € 5.B(a = b)) 4)

Let us denote the referential integrity constraint by an arrow
as in R.A — S.B.

Our definition of the entity integrity constraint is more
extensive than the definition used in [30].

Definition 4.5: An entity integrity constraint requires one
or more of the following conditions to be satisfied.

 Primary key constraint: R.A4 # null if A is the primary

key of R'!.

» Range constraint: If R.A is not null then a,6, R. 46504
where a1, a2 are non-null constants, and #, 6, are < or
<.

* Value constraint: R.A = o or R.A # a where « is a
constant which may be null.

There can be other kinds of entity integrity constraint. For
example, R.A can have a type constraint such as “the value of
R.A must be an integer.” However, those defined in Definition
4.5 are sufficient for our work. Fig. 6 shows the schema,
the referential integrity constraints and the entity integrity
constraints of a sample database.

""In [30). only this constraint is used as the entity integrity constraint.

C. View Model

Fig. 7 shows the components of the view model. A view
consists of two parts: a query part and a mapping part. The
mapping part in turn consists of an attribute mapping function
(AMF) and a pivot description (PD). The AMF defines the
mapping between object attributes (S,) and relation attributes
(S;). The PD consists of a set of pivot relations (PS) and a
pivot mapping function (PMF). The PMF defines the mapping
between the pivot reiations and the (subjobjecis'.

A high-level language for defining a view can be designed.
The view should be preprocessed to generate the mapping
components as well as the query.

Query Part: Fig. 8 shows the query graph for the Pro-
grammer object. A query graph (QG) is a directed connected
graph. Each vertex is represented by the node of a relation R
labeled with a filter f and with the set of attributes 7 projected
from R. For example, the Pro j-Assign relation is labeled
with a filter task = programming and a set of projected
attributes task. Two occurrences of the same relation are
distinguished by a tuple variable denoted as a subscript. For
example, the two occurrence of the Emp relation in Fig. 8
are distinguished into node Emp; and node Emps. Each edge
represents a join specified in the query. A join is either an
inner join or a left outer join. Since left outer joins are not
symmetric, the edges are directed. For example, the directed
edge from the Proj-Assign) node to the Project; node
denotes a left outer join from the Proj-Assign relation to
the Project relation.

Mapping Part: Now we give a more rigorous description
of the mapping part. The set of object attributes S, of an object
type O is represented as the set of Ochains, as follows.

S. = {Ochain(O. s9)|so € Attr(0O)}

Ochain(O, sy) was defined in Definition 4.3. The set of relation
attributes S, is defined as follows.

S, ={R.A

A CAur(R)}

where R is a relation occurrence in the query part of a view.
Since we assume no derived attribute, there exists a one-to-
one mapping between S, and S,. This mapping information
is contained in the attribute mapping function. The following
example shows the mapping between the S, and S, of the
Programmer object.
Example 4.1 (Attribute Mapping Function):
Programmer.name + Emp;.name,
Programmer.dept + Emp;.dept,
Programmer.salary < Emp;.salary,
Programmer.manager « Division;.manager,
Programmer.task < Proj-Assign,.task,
Programmer.Project.title «
Proj-Title.title,
Programmer.Project.sponsor « Sponsor;.name,
Programmer.Project.leader «— Emp:.name,
Programmer.Project.depart < Project;.dept

120r equivalently., between the keys of the pivot relations and the id's of
the (sub)objects.



114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

/* Underlined attributee are keys. */
Division(name, manager, super-division, location)
Dept(name, budget, phone#)

Emp{ssn, name, salary, dept)

Engineer(ssn, degree, specialty)

Proj- Assign(emp, proj, iz=sk}

Project(proj#, dept, leader, sponsor)
Sponsor(name, phone#, address)

Proj-Title(proj#, title)

/* — denotes a referential integrity constraint. */

Division.manager — Emp.name
Division.super-division — Division.name
Dept.name + Division.name

Emp.dept — Dept.name

Engineer.ssn — Emp.ssn

Proj-Assign.emp — Engineer.ssn
Proj-Assign.proj — Project.proj#
Project.dept — Dept.name
Project.leader — Emp.ssn
Project.sponsor — Sponsor.name
Project-title.proj# — Project.proj#

The keys of all relations shown in the database schema are disallowed from having nulls. In addition,
Emp.dept and Emp.name are prohibited from having nulls as well.

Fig. 6.

View

Mappipg part Query part

Attribute mapping function

{  (Oghain}= So<e—tl—»gr

: consists of
:generates

Object <=3 :defines

PS: the set of pivots ~ Oset: object st Ochain: object chain
So: the set of Ochains of object attributes appearing in the object type
Sr: the set of relation attributes appearing in the query

Fig. 7. Mapping between objects and relations.

As shown in Fig. 3, a pivot relation is either a base relation
or a derived relation. If it is a base relation, its key is mapped
to the oid. If it is a derived relation, the key of one of its
base relations is mapped to the oid. Fig. 8 shows two pivots,
Programmer; and Project;. Here Project; is the node
of a base relation and Programmer; is the node of a derived
relation defined by (Engineer,, {Engineer; 1<

ssn=ssn

“programming’ Proj — Assign,}). A formal definition of a
derived relation is as follows.

Definition 4.6: A derived relation of an object type O is
an ordered pair (Ry, E) where R, is a base relation whose
key is mapped to the oid of the object type O, and E is a
select-join'® expression such that, for all possible instances of
the relations in E:

* Hkeyry) £ S key(r,,) o

« ~3E(E" <g, E A [Ikeyre) E' C Hkey(r,) £) where

E' <pg, E denotes that E’ is a proper subexpression of
F and have R, in common with E.

That is, the result of evaluating E produces a subset of the
keys available from Rj and there is no poper subexpression F’
that, when evaluated, produces a subset of the keys produced

Otask —

13Selection is not required while join is required.

A sample database. (a) Database schema. (b) Referential integrity constraints. (c) Entity integrity constraints.

from FE. The second property of the above definition is
the minimality property. Note that the definition lacks the
uniqueness property. Therefore there can be a superexpression
E" that produces the same set of keys. In this case, we always
choose the minimal expression E.

For every object and its subobject, there always exists one
and only one relation occurrence whose key is mapped to the
oid. In other words, there is a one-fo-one mapping between
the object set defined in Definition 4.2 and the set of pivot
relations (PS). This mapping information is contained in the
pivot mapping function. For example, the mapping between
the Oset and PS of the Programmer object is as follows.

Example 4.2 (Pivot Mapping Function):

Programmer < Programmer,,Project « Project;

As mentioned in Section IV-A, we associate value-oriented
oid’s with an object and its subobjects. These oid’s are
invisible in the type definition, and their mappings to relation
attributes are not explicitly specified in the attribute mapping
function. These mappings are derived from the information
stored in the pivot description using the following algorithm.

Algorithm 4.1 :

For each pivot relation p € PS begin
If p is a base relation
then append ‘Ochain(O, PMF(p)).id <
p.Key(p)’ to AMF.
else /* p is a derived relation */ begin
Find the base relation R; of p.
Append ‘Ochain(O, PMF(p)).id—
Ry.Key(Ry)' to AMF.
end.
end.

For example, given the set of pivot relations and the
pivot mapping function of the Programmer view, Algorithm
4.1 derives the following mappings between the id’s of the
Programmer object and its Project subobject and their
corresponding pivot relation keys. These are appended to the
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Programmerl

[

{manager}

task }

i+ (_Proj-Assignl

Fig. 8. The query graph for the P rogrammer object. (The keys of Engineer
I and Project | are mapped to the id’s of the Programmer object and the
Project subobject, respectively. Dotted lines denote pivots.)

AMF:

{Programmer.id < Engineer,.ssn,

Programmer.Project.id «» Project,.proj#}.

There is a constraint on the definition of the attribute
mapping function. Let us consider two object attributes sy and
s1 that belong to the same level of an O-tree and their mapped
relation attributes AMF(sy) and AMF(s1). Then AMF(s() and
AMF(s1) must either belong to the same relation or there must
exist a one-to-one cardinality relationship between them.

The attribute mapping function is essential for making it
simple to map between objects and relations, as will be
demonstrated in the following section.

V. DEVELOPMENT OF THE MECHANISM

Now we describe the mechanism for prescribing joins in a
query as inner joins or left outer joins, and also for generating
non-null filters for some relations in the query. We first present
an overview of our mechanism and then discuss each step in
detail.

A. Overview

There are two sources of nulls retrieved from databases.
One is from the nulls stored in the tuples, and the other is
from the nulls inserted for nonmatching tuples of an outer
join. Inner joins create nulls from the first source only, while
outer joins create nulls from both sources. Objects allow nulls
by default and need only one kind of outer join, left outer
join, as explained in Section I[I-B. Therefore our strategy is to
initialize all joins of a query as left outer joins and then replace
part of them by inner joins at each step of our mechanism.

The steps of our mechanism are as follows.

1) Compile the object type O and generate the object set
(Oset) and the set of Ochain((, sg)’s for all the attributes
defined in O.

2) Preprocess the view and generate the query and the
mapping part: AMF, PMF, and PS.

3) Derive the mappings between oid’s and the keys of pivot
relations using Algorithm 4.1, and add the result to the
attribute mapping function.

4) Initialize all joins of the query as left outer joins.

5) Replace all joins that appear in the definition of derived
relations by inner joins. (See Section V-B.)

6) Map non-null options on object attributes to non-null
constraints on the query result. Replace some joins by

inner joins and add non-null filters to some relations
accordingly. (See Sections V-C and V-D.)

7) Find the left outer joins that produce the same tuples
as inner joins due to referential or entity integrity con-
straints, and replace those left outer joins by inner joins.
Find also the relations whose non-null filtered attributes
cannot have nulls due to entity integrity constraints, and
remove the non-null filters from those relations. (See
Section V-E.)

B. Joins Within a Derived Relation

As mentioned in Section II-B, a derived relation is a
conceptual relation defined from base relations via a select-join
expression, and this provides an abstraction of base relations
so that the semantics of the derived relation directly matches
the semantics of the instantiated objects.

All joins specified within a derived relation must be inner
joins, as shown by the following theorem.

Theorem 5.1: Let us consider an object type O and a
derived relation (R;, E') defined according to Definition 4.6.
If £ = Ry >x Ry pa--- a1 R, then all the joins from R,
through R, are inner joins.

Proof: 1f we assume a join from R; to R;;, is a left
outer join for an arbitrary ¢ € [1,n ~ 1] while the others are
inner joins, then the following is true.

HKey(Rl)(Rl D(]RQ D<1~-'NR1'D<1R1'+1 N"‘NRn)

Kev(Ry)

That is, there exists a proper subexpression that, when evalu-
ated, produces the same set of keys available from R;. This
violates the second condition required of £ in Definition 4.6.
Therefore, all the joins in £ must be inner joins. Q.E.D:

For example, given a derived relation (Engineer,,
{Engineer;, @ o  task = “programming”

SSII=SSN

Proj — Assign,}) defined to provide the semantics of
the Programmer object, the join between Engineer;
and Proj-Assign; must be an inner join. If the join
is evaluated as a left outer join, it retrieves all tuples of
Engineers, not just those corresponding to programmers,
who are defined as the engineers working on a programming
task in the assigned projects.

Thus, given the set PS of pivot relations:

Algorithm 5.1: 1. For each derived relation {Ry, F) in the
set of pivot relations (PS),

replace all joins in E by inner joins.

C. Mapping Non-null Options to Non-null
Constraints on the Query Result

Let us consider an object O whose attribute sy has a non-
null option. It requires there should exist a non-null sq given
the oid of the object. Let us denote this non-null constraint as
0.id = s¢. If $¢ is a simple attribute, it is non-null if its value
is not null. On the other hand if s is a complex attribute, it
defines a subobject. An object is non-null only if its oid is non-
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null. We thus interpret the semantics of non-null sy according
to the following rule of non-null constraint.

Rules 5.1 (Non-null Constraint): Let us at this point con-
sider Ochain{0, 5,) = 0.01. - - - .Oy.5,. If 50 has a non-null
option, then, given O, .id,

« if 59 is a simple attribute, i.e., Oy,.id = sg, then so cannot

be null;

o if sy is a complex attribute, ie., O.id = sg.id, then

sg.1d cannot be null.

For example, given the Programmer object of Fig. 4,
the non-null options on name and dept attributes are in-
terpreted as Programmer.id = name and Program-
mer.id = dept, respectively, because name and dept
are simple aitributes. Besides, the non-null options on title
and depart are interpreted as Project.id = title
and Project.id = depart, respectively. Beware they
are not interpreted as Programmer.id = title and
Programmer.id = depart because title and depart
are the (direct) attributes of Project subobject instead of
the Programmer object. On the other hand, if there were
a non-null option on Project, it would be interpreted as
Programmer.id = Project.id because Project is a
complex attribute.

Can we map the non-null constraint defined by Rule 5.1 to
the corresponding non-null constraint on the query result? It
is possible in our model because the oid of each (sub)object
always has a corresponding pivot relation key. The attribute
mapping function in Example 4.1 showed this correspondence
for the Programmer object. Using the correspondence, the
non-null constraints on the name and dept attributes of
the Programmer object are mapped to Engineer,.ssn =
Emp; name and Engineer;.ssn = Emp,.dept, respectively.
Likewise, if Project had the non-null option, its constraint
would be mapped to Engineer;.ssn = Project;.proj#.
The non-null option on the title attribute is mapped
not to Engineer,.ssn = Proj — Title;.title but to
Project,.proj# = Proj — Title,.title because title
is defined not as an attribute of Programmer object but
as an attribute of Project subobject. For the same reason,
the non-null option on the depart attribute of Project is
mapped to Project,.proj# = Project,.dept.

More formally, a non-null option on the attribute s of an
object type O is translated into the non-null constraint on the
query result as follows.

Algorithm 5.2:

1) Qg .50 := Ochain(0. sg) = 0p.01.---.0y.50.

2) R,.A:= AMF(Qg ,.id). /* A is always the key of R),. */

3) If s is a simple attribute

then R,.B := AMF(QOW.S())
else R..B := AMF(Qq,.50).. /* If sp is a complex
attribute, B is the key of R,. */

4) Output the constraint 2,.A = R,.B.

D. Prescribing Joins and Generating Non-null Filters

With the non-null constraints on the query result, we trans-
late them into the corresponding inner joins and non-null filters

of the query. Given the constraint [{,.A = R,.B obtained
from Algorithm 5.2, it is done as follows.
Algorithm 5.3:

1) Replace the filter f; on Ry by fs A (B # mull). /*
Generate a non-null filter. */
2) /* Prescribe a join. */
a) Find all directed join paths from R, to R,.
b) For each path found in Step 2(a),
replace all joins on the path by inner joins.

For example, given the non-null constraints established
in Section V-C, the following non-null filters are
generated in the query of the Programmer object:
Emp;.name # null.Emp,.dept # null ,Project,.dept #
null,Proj — Title,.title # null. Besides, the
following left outer joins are replaced by inner joins:
Engineer, < Emp,,Project, > Proj — Title,.

Now we prove the correctness of Algorithm 5.3 with the
following theorem.

Theorem 5.2: Given a join path R} > Ra > -+ < R,
and a non-null constraint ?;.4; = R, .A, on the join result,
the materialized join result satisfies this non-null constraint if
and only if all the joins are inner joins and R,, is filtered by
An # null

Proof: If part: If all joins on the join path are inner joins,
any nonmatching tuples are discarded. Then, the attribute A4,
in the join result can have nulls only if A,, is nor a join attribute
and some tuples of R, have null A,. (If it is a join attribute,
any tuple of R,, with null A,, is discarded by an inner join.)
However, tuples with null A4, are removed from R, by the
given non-null filter. Therefore the constraint is satisfied.

Only if part: We prove this part by contradiction. Let us first
assume R; b1 R, 11 is a left outer join for some ¢ although the
constraint is satisfied and let I2;; have nonmatching tuples.
Then a null R,,.A, is retrieved from the null tuples appended
to the tuples of R; that have no matching tuples in R;.;.
This contradicts the assumed constraint. Therefore all the joins
must be inner joins. Next, let us assume IR, is not filtered by
A, # null though the constraint is satisfied and all joins are
inner joins. Then null R,,.A,, is retrieved from the nulls srored
in R,.A, if A, is not a join attribute. This contradicts the
assumed constraint. Q.E.D.

E. Reducing the Number of Left Outer
Joins and Non-null Filters

We can further reduce the number of left outer joins and
non-null filters by using integrity constraints.

Considering entity integrity constraints, some non-null fil-
ters are removed if they are defined on attributes that cannot
have null. A typical case is when the attribute is a key (primary
key constraint) or any other non-null attribute designated in
the schema definition (value constraint). For example, we can
remove Emp, .name # null and Emp,.dept # null among the
four non-null constraints generated in Section V-D because, as
it was shown in Fig. 6(c), those two attributes are prohibited
from having nulls.

We can also replace some left outer equijoins with inner
equijoins if we consider referential integrity constraints. Since
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a referential integrity R.A — S.B allows R.A to be null, we
define a stronger condition by introducing a variable min as
follows.

Definition 5.1 (min): Given a join R; > Rj, let min;;
denote the minimum number of matching tuples in R; for
each tuple in R;. Note min;; is not necessarily the same as
ming;.

Besides, some left outer non-equijoins can be replaced by
inner non-equijoins if we consider entity integrity constraints
such as range constraints.

Using only the semantics of min without considering the
instances of relations'®, we define the following rules for
deciding whether min is greater than zero or not. MIN(R.A)
denotes the minimum non-null value R.A can have, and
MAX(R.A) denotes the maximum non-null value R.A can
have. MIN(R.A) and MAX(R.A) are known from the range
constraints or value constraints, if there are any, on R.A.

Rules 5.2:

+ Given a single join predicate AfB for a join between two
relations R; and Rj, min;; > 0 if R;.A is a non-null
attribute and one or more of the following conditions are
satisfied.

‘and R,.A — R;.B and the filter f; on R; is empty, or

6 =*> and MIN(R;.A) > MAX (R;.B), or

= > and MIN(R;.A) > MAX(R,.B),or

§ =< and MAX(R,.A) < MIN(R;.B), or

6 = < and MAX(R,.4) < MIN(R;.B), or

6 = # " and (MIN(R,.4) > MAX(R;.B) or MAX(R;.A) < MIN(R,.B)).

Otherwise min;; = 0'.

« Given a conjunctive join predicate A;6; By A Az82Bs A
-+« A A By, for a join between f2; and R, min;; > 0
for the conjunction of join predicates if min;; > 0 for
every single join predicate. Otherwise min;; = 0.

« Given a disjunctive join predicate A;161B; V A26:B2 V
-+ V Apbr By for a join between R; and Rj, min;; > 0
for the disjunction of join predicates if min;; > 0 for at
least one join predicate. Otherwise min;; = 0.

» Given a join path between two relations, such as R; b
Rig1 v --- > Ry, ming; > 0 if ming gy > O for
k =14,---,7 — 1. Otherwise min;; = 0.

If min;; > O for a join path from R; though R;, we can
replace all joins on the path by inner joins and still get the same
query result. Now we describe an algorithm for reducing the
number of left outer joins using min.

Algorithm 5 .4:

1) Find all join paths between pairs of nodes, such as R;
and R;, whose min;; > 0.

2) For each join path found in Step 1,
replace all joins on the path with inner joins.

In other words, we ignore the fact that min may be accidentally greater
than zero at the instance level though it is judged to be equal to zero at the
semantic level.

lSmin,J = 0 does not mean that min,; is always equal to zero. Rather,

it means that it is not known at the semantic level whether min,; is greater
than zero.

For example, in the query of Programmer object we
find a join path from Engineer; to Division; for which
all three joins have min > 0 because, as shown in Fig. 6,
there are referential integrities Engineer,.ssn +— Emp,.ssn,
Emp,.dept — Dept,.name, Dept,.name — Division;.name,
and there are integrity constraints prohibiting nulls for
Engineer,.ssn,Emp,.dept, and Dept,.name, and none of
the relations on the join path has a nonempty filter. We also
find a join path from Proj — Assign, to Project for which
the min > 0. All these joins are replaced by inner joins. Note
Project; X Empy and Project; < Sponsor; can not
be replaced with inner joins because Project.leader and
Project.sponsor are not non-null attributes.

F. Summary of the Mechanism

Given a query with initial left outer joins, the overall
mechanism developed in Section V is as follows.
Algorithm 5.5:

1) /* Replace all joins within derived relations with inner
joins. /*
For each derived relation (R, E) in the set of pivot
relations (PS), replace all joins in E by inner joins.

2) For each attribute sq of the object O that has a non-null
option,

a) /* Map the non-null option to a non-null constraint
on the query result */
i) Q()_n.S(] = Ochain((). SQ) = Oo.()]. E AO,l.SQ.
i) Rp.A:= AMF(Qq,, id). /¥ A is always the key
of R,. */
iii) If sp is a simple attribute
then RS.B = AMF(QQ,H.SU)
else Rs.B := AMF(Qq,,,.s0.id). /* If 50 is a
complex attribute, B is the key of s . */
iv) Output the non-null constraint i,.4 = R,.B.
b) /* Generate a non-null filter and prescribe a join.
*/
i) Replace the filter f; on R, by f A (B # null).
/* Generate a non-null filter. */
i) /* Prescribe a join. */
A) Find all directed join paths from 12, to I.
B) For each path found in Step 2(b)iiA,
replace all joins on the path by inner joins.

3) /* Remove all non-null filters that can be shown to be
redundant using the entity integrity constraint. */
Remove R.A # null such that 4 is a non-null attribute.

4) /* Replace left outer joins if they prove to be equivalent
to inner joins.*/

a) Find all join paths between pairs of nodes, such
as It; and 7, whose min;; > 0.

b) For each join path found in Step 1,
replace all joins on the path with inner joins.

The graph of the query for the Programmer object, labeled
with joins and non-null filters, is shown in Fig. 9. All the joins
of the query except those between Project; and Emps and
between Project; and Sponsor; have been prescribed as
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Programmer1

[ a.mcisalary.dcpl] b 'manager)

Lo {name}

title<>null

Fig.9. The query graph for the Frogrammer object with joins and non-null
filters. (I denotes an inner join, and LO denotes a left outer join.)

inner joins. Two non-null filters have been attached as the
selection conditions on the Project; and Proj-Title;
nodes.

VI. CONCLUSION

We developed a mechanism for automatically prescribing
inner or left outer joins for the joins of a query used to
instantiate objects from a relational database. It also generates
non-null filters for some of the relations in the query. We
developed a rigorous system model that facilitates the mapping
between objects and relations. The system model consists of
an object type model, a view model, and a relational data
model. These models are based on a standard model or well-
known models. We added a few new components to the object
type model and view model. These components are easily
implementable in existing systems.

Our result demonstrates how simple the mechanism be-
comes once the system model is established. The only criterion
for the mechanism to use is the non-null option on object
attributes, the semantics of which are mapped to the non-
null constraint on the query result. The number of left outer
joins and non-null filters is reduced whenever possible using
the integrity constraints so that the query is processed more
efficiently.
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