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Outer Joins and F ilters for Instantiating Objects 
from  Relational Databases Through Views 

Byung Suk Lee, Member, IEEE, and Gio Wiederhold, Fellow. IEEE 

Abstract- One of the approaches for integrating object- 
oriented programs with databases is to instantiate objects 
from relational databases by evaluating view queries. In that 
approach, it is often necessary to evaluate some joins of the 
query by left outer joins to prevent information loss caused 
by the tuples discarded by inner joins. It is also necessary to 
filter some relations with selection conditions to prevent the 
retrieval of unwanted nulls. 

The system should automatically prescribe joins as inner or 
left outer joins and generate the filters, rather than letting them 
be specified manually for every view definition. We develop such 
a mechanism in this paper. We first develop a rigorous system 
model to facilitate the mapping between an object-oriented 
model and the relational model. The system model provides a 
well-defined context for developing a simple mechanism. 

The mechanism requires only one piece of information from 
users: null options on an object attribute. The semantics of 
these options are mapped to non-null constraints on the query 
result. Then the system prescribes joins and generates filters 
accordingly. We also address reducing the number of left 
outer joins and the filters so that the query can be processed 
more efficiently. 

Index Terms-Complex object, filter, outer join, relation stor- 
age, view. 

I. INTRODUCTION 

0 NE of the approaches for integrating object-oriented pro- 
grams with relational databases is to instantiate objects 

from relational databases through views [7]-[9], [ lo]-[ 151. 
A view is defined by a relational query and a function for 
mapping between object attributes and relation attributes. The 
query is used to materialize the necessary data into a relation 
from database, and the function is used to restructure the 
materialized relation into objects. This approach provides an 
effective mechanism for building object-oriented applications 
on top of relational databases. 

In instantiating objects, some particular conditions arise that 
are not so common in traditional relational database operations. 
First of all, as will be shown in Section III-B, it often happens 
that we lose tuples that should be retrieved from databases if 
we allow only inner joins, Hence, it becomes necessary to 
evaluate some joins of the query by outer joins [27]. Outer 
joins do not discard any tuple in the joined relations by 
inserting null tuples in place of where a matching tuple would 
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have been inserted if there were one. In particular, we need 
unidirectional outer joins such as left outer joins. On the other 
hand, we sometimes retrieve unwanted nulls from nulls stored 
in databases, even if there is no null inserted during query 
processing. In this case, it is necessary to filter some relations 
with selection conditions that eliminate the tuples containing 
null attributes in order to prevent the retrieval of unwanted 
nulls. 

It is desirable to make the system to generate those left 
outer joins and filters as needed rather than requiring that a 
programmer specify them manually as part of the query for 
every view definition. We develop such a mechanism in this 
paper. 

Without optimization, declarative approaches such as SQL 
queries and views are not practical. However, optimization of 
queries with outer joins has rarely been treated. Since left outer 
joins are not symmetric, they inhibit a query optimizer from 
attempting to reorder joins for more efficient query processing. 
Furthermore, application of non-null filters is not free. It incurs 
the cost of evaluating the corresponding selection predicates 
on a base relation. We show that these two operators can be 
avoided without affecting the query result for frequent cases 
we will define in this paper. 

We made the following contributions in the context of 
instantiating objects from relational databases through views. 

l Two key operators-a left outer join and a non-null 
filter-for preventing information loss and the retrieval 
of unwanted information. 

l A simple mechanism for specifying those two operators in 
a relational view query, given a system model we define. 
The system model is easily implementable in existing 
systems. 

l Optimization by reducing the number of the two operators 
without affecting query results. 

II. BACKGROUND FRAMEWORK 

A. Integration of Object-Oriented Programs and Databases 

The desire for integrating object-oriented programs with 
databases has been increasing recently. This integration en- 
ables applications working in object-oriented environment to 
have shared, concurrent access to persistent storage. Examples 
are the engineering applications such as computer-aided de- 
sign and computer-aided software engineering. These are not 
well supported by conventional databases such as relational 
databases. 
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We distinguish two alternative approaches to the integration 
of objects and databases: the direct object storage approach 
and the indirect base relation storage approach. In the object 
storage approach, an object-oriented model is used uniformly 
for applications and persistent storage [ l]-[3], [5], [6]; objects 
are retrieved and stored as objects. In the relation storage 
approach, an object-oriented model is used for the applications 
while a relational storage model is used for persistent storage 
[4], [7]-[15], and objects are retrieved by evaluating queries 
to databases. 

The relation storage approach incurs the overhead of map- 
ping between different models [lo], [ 161 but is useful for large 
databases since the relation storage approach supports sharing 
of different user views better than the object storage approach. 
Direct storage of objects is simple but inhibits sharability 
[IO]. For example, let us assume two users define Em- 
ployee objects differently as Employee(name, salary) 
and Employee(name, department) respectively. In the 
object storage approach, the two Employee objects are stored 
separately. To provide sharing requires a separate mechanism 
for identifying the owners. In the relation storage approach, 
however, this problem does not occur because the information 
to support the two Employee objects is stored in a single re- 
lation Employee(name, salary,department), and their 
owners are distinguished by the database view mechanism. 

B. Two Perspectives of the Relation Storage Approach 
We observed two different perspectives within the relation 

storage approach: object centered [4], [7]-[9] and relation 
centered [ lo]-[ 151. In object-centered perspective, relation 
schemas are generated from given object schemas, i.e., types 
and their hierarchy. Relations are the destination for storing 
objects, and objects are decomposed into relations using the 
concept of normalization. On  the other hand, in relation- 
centered perspective, object schemas are defined from given 
relation schemas. Relations are the source for generating 
objects, and objects are composed from relations. The com- 
position of objects is useful for building object-oriented ap- 
plications on top of existing relational databases’. The two 
perspectives may look like the two sides of the same coin, but 
they differ operationally. Fig. 1 shows the two perspectives. 
In Fig. I(a), the Project-manager type is mapped to 
the Project-manager relation. There exists a separate 
relation for each corresponding object type. In Fig. I(b), there 
does not exist a separate Project-manager relation in 
the given database. Rather, the Project-manager type is 
defined as an abstraction through views, such as defining a 
join between the Employee relation and Project relation 
along the manager-s sn foreign key. The join retrieves only 
the employees that are managing one or more projects. Let 
us consider the project-manager as a derived relation of 
the Employee and Project relations. Note that the derived 
relation is analogous to the intensional database (IDB) relation 
[20], [21] used in the integration of the logic-based model 

’ We cannot throw away the relational data model in a decade. Remember 
that the IMS hierarchical data model implementation is still prevalent while 
we call the relational model “conventional.” 

Relation Project-manager(ssn, .) 

(a) 

Relation Project(. ., manager-ssn, .) 

(b) 

Fig. I. Two perspectives of the relation storage approach. (a) Object-centered 
perspective. (b) Relation-centered perspective. 

and relational model [21]-[23]. For example, the IDB relation 
of the Project-manager is written as follows using the 
notion of Datalog [20]. 
Prolect-manager (ssn, .) : - Employee (ssn.. .) 

&. Pro]ect (.--, manager-ssn, ...I 
& ssn = manager-ssn. 

We use the relation-centered perspective throughout the 
discussion in this paper, but the result is applicable to the 
object-centered perspective as well. 

C. Instantiating Objects f?om Relations Through Views 

Views provide a user-defined subset of a large database. 
Thus, as mentioned in Sections II-A and II-B, views are used 
as a tool for providing sharing and abstraction in interfacing 
between an object-oriented model and the relational model. 
We also want to use the views for instantiating objects from 
relations. To achieve this, views should provide mapping 
between heterogeneous structures of the two models. This 
mapping information is used by a NEST [24]-[26] operator to 
restructure a query result into objects. In [ 171 and [ 181 appears 
a description of different methods of implementing the NEST 
operator. Our  concern in this paper is only the mapping of 
attributes. 

The mapping is done by linking object attributes to cor- 
responding relation attributes. Objects have more complex 
structures than relations. For instance, objects support aggrega- 
tion hierarchies [34] through an is-part-of relationship.’ Hence 
objects have a nested structure, which is different from nested 
tuples because the type of an attribute can be a reference 
to another object. Therefore, given relation attributes, it is 
difficult to map the relation attributes to object attributes 
without explicitly specified mapping information. We thus 
need to extend the views by adding an additional component 
for the mapping, that is, an attribute mapping function. 

Fig. 2 shows an example of instantiating objects through 
such an extended view. The object type defines the structure 
of objects to be retrieved from the database. The query part 
of the view specifies how to materialize the objects from the 
relational database. The join between the Employee relation 
and the Child relation has the semantics of nesting, such 
as “For each Employee tuple, retrieve the matching tuple 
in the Child relation.” The outer relation is called a source 
relation, and the inner relation is called a destination relation 
in our work. The attribute mapping part of the view shows the 

‘Objects also support a generalization hierarchy through an is-a relation- 
ship, inheriting part of the attributes from parent objects. We regarded the 
inherited attributes as well as the local attributes uniformly as belonging to 
the objects. 
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Database schema: /* Underl ined attributes are keys. */ 
Employee&& emmx, salary, dept#) 
Deparment(dept#, dname, maqerssn) 
Child(ssn. cname, xx, birth-date) 

Object Type Employee J’ [ ] denotes a tuple. *J 
[name: string, dept: Department, 
children: [name: string, birthDate: string]\ 

l Query expressed in relational algebra: 

n{ssn,ename,dept#,cname,birthDate} Emp1oyee &%, Chi1d 

0 Mapping between object attributes and relation attributes: 

- : is-par-of 

ssn e-name dept# <s.sn,c-name> c-name birth-date 

Fig. 2. An example of instantiating an object type through views. 

aggregat ion hierarchy of object attributes and  their mapping to 
relation attributes. The mapping is one  to one  as long as there is 
no  der ived attribute among the object attributes. W e  use the key 
attribute of one  of the relations as the source of the oidentifier 
(oid). In Fig. 2, the key ssn of the Employee relation 
is retr ieved to become the oid of the Employee object. 
Object id’s are not explicitly def ined in the type definition 
but are assumed to exist implicitly. The  dept  attribute of 
an  Employee object has  type Department.  W e  call an  
attribute whose type is another object type a  reference attribute. 
In object-oriented paradigm, a  reference is implemented with 
the oid of the referenced object. In our framework, the value 
of a  reference attribute is retr ieved from the key of a  database 
relation that is mapped  to the oid of the referenced object. 
Thus, in Fig. 2  the dept  attribute of an  Employee object is 
retr ieved from the dept  #  of the Department relation3. The 
chi ldren attribute def ines a  subobject of the Employee 
object, and  each subobject has  its own attr ibutes-name and  
birt hDate. Here a  subobject is def ined as an  object that 
does  not have its own type definition but has  its structure 
contained in another object, which again may be  a  subobject 
of another object4. Like the Employee object, a  chi ldren 
subobject is assumed to have its oid, but the oid is not actually 
retr ieved from a  database relation. The id’s of the chi ldren 
subobjects are needed  for a  different purpose,  which will be  
discussed in Section V-C. 

III. PROBLEM FORMULATION 

A. The Two Operators 
In the introduction, we ment ioned the need  for two operators 

for instantiating objects from relational databases through 
views: a  left outer join and  a  non-nul l  filter. A left outer join 

‘Let us assume there is a type Department whose oid is retrieved from 
the deptk of the Department relation. 

4Do not confuse subobjects with the instances of a subtype in an is-a 
hierarchy of object types. 

is different from an  inner join in that it retrieves null tuples 
when there is no  matching tuple in the destination relation for a  
given source relation. A non-nul l  filter is a  selection condit ion 
for eliminating any nulls of an  attribute from a  base relation5. 
Formal definitions of the left outer join and  the non-nul l  filter 
are as follows. 

Definition 3.1: Left Outer Join: Given two relations RI and  
RP, a  left outer join from RI to R2, denoted by RI w Rz, 
is def ined as follows. 

RI w Rz = (R, w R2) u  ((RI - n,,(R, w R,)) x 11) (1) 

where w denotes an  inner join, n,, (RI w R2) denotes the 
projection of RI w R2 on  the attributes of RI, and  h  denotes 
a  null tuple consist ing of nulls for all attributes of R2. In other 
words, R,sRz produces the following set of tuples. 

{< tl: t2 >  ItI E RI A tz E R2 A t,.ABt,.B}u 
{< tl,A > ItI E R,A $lt2(t2 E R2 A t~Mtz.B)} (2) 

where B denotes a  compar ison operator, i.e., 0  E {< , I, >, 
2, => #>. 

For the rest of this paper,  we use a  small size join symbol 
(w) to denote a  join which can be  (has not yet been  determined 
to be) either an  inner join (w) or a  left outer join (w). 

Definition 3.2: Non-nul l  Filter: A non-nul l  filter is a  con- 
junction of predicates appl icable to a  base relation R, def ined 
as follows. 

R.Al #  null A R.A2 #  null A . . A R.Ai #  null (3) 

where AI i AZ, . , ’ %  A, are the attributes of R. that are not 
al lowed to have nulls. 

B. Motivation 

Why  do  we need  left outer joins and  non-null f i l ters? Objects 
are identified by their identiliers (aid’s) only. In other words, 
an  object exists even if all of its attributes are nulls as  
long as it has  an  oid. Let us  consider the objects of type 
Employee shown in Fig. 2. An Employee object exists 
only if it has  its oid retr ieved from the ssn of the Employee 
relation, Assuming that the Employee object al lows null for 
its chi ldren attribute, what will happen  if the join between 
Employee relation and  Child relation is evaluated by an  
inner join? Any employee tuple that has  no  matching tuple 
in the Chi Id relation will be  discarded. In other words, any  
employee without chi ldren will not be  retrieved. Therefore, 
it is certain that we must evaluate the join by  an  outer join 
to prevent the loss of employees that do  not have children. 
Furthermore. what we need  is not a  bilateral outer join but a  
unilateral outer join, because we are not interested in retrieving 
a  Child tuple that has  no  matching tuple in the Employee 
relation, that is, a  child without a  parent. Therefore, a  left outer 
join is adequate assuming that the source, here the Emp 1  oyee,  
relation is the left-hand side operand of the join. W e  assume 
the source relation is always on  the left-hand side of a  join 
and  thus use only left outer joins for the rest of this paper.  

5A base relation ia the relation defined by the relation schema of a database, 
neither a view nor an intermediate relation. 
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Now let us  assume the Employee objects prohibit nulls for 
the dept  attribute since a  department affiliation is required of 
every employee, while in the relational database a  department 
affiliation is not required. As ment ioned in Section II-C, the 
dept  attribute is retr ieved from the dept# of the Employee 
relation. The join between the Employee relation and  the 
Child relation is immaterial to the retrieval of dept# 
attribute. Rather, nulls of the dept# attribute stored in the 
tuples of the relation Employee should not be  retrieved. 
Therefore, we must filter the Employee relation with a  
selection condit ion dept# #  null. W e  call this selection 
condit ion a  non-null jilter. 

W e  see from the above examples that we frequently need  
left outer joins [27] to prevent the loss of wanted objects and  
non-nul l  filters to prevent the retrieval of unwanted nulls. 

Why  do  MJe want rhe system to do  ir? Null-related seman-  
tics of object types are hard to understand and  hence likely 
to induce errors. For example, the Employee type definition 
shown in Fig. 2  does  not distinguish between the semantics 
of “employees and  their zero or more chi ldren” and  the 
semantics of “employees with at least one  child.” A left outer 
join is needed  for the former, while an  inner join is needed  
for the latter. The  distinction is entirely the programmer’s 
responsibil ity. Even if the semantics are clear, it is an  effort 
for the programmer to determine the left outer joins and  
non-nul l  filters given an  object type and  the corresponding 
view. especial ly if the view def ines many joins. Therefore 
mechanizat ion of the process is useful. 

Why do we want to reduce the number of left outer joins and 
non-nullfilters? The view query is processed more efficiently 
if we can eliminate a  non-nul l  filter, X.A #  null, without af- 
fecting the query result and  thus avoid evaluat ing unnecessary 
selection condit ions. Sometimes it is known at the semantic 
level that the column A of a  relation R contains no  null. An 
example is when il is the key of R and  the entity integrity 
[30] is preseved.  

The query also becomes more efficient if we reduce the 
number  of left outer joins and  still retrieve the same result. 
Sometimes left outer joins produce the same tuples as inner 
joins. For example, in Fig. 2, if every employee has one  or 
more children, then the same tuples are produced by either join 
method. W e  know this fact at the semantic level, provided 
that the system enforces the referential integrity [30] from 
Emplcyee.ssn to Child.ssn. As another example, let 
us  consider the following directed join graph. 

where the join from R2 to R3 is a  left outer join and  the 
others are inner joins. If it is known there always exists a  
matching tuple of R3 for every tuple of R2, then the result of 
RI w R2 w RI( w R, is the same as RI w R2 w R3 w R.4. 
Now, if we evaluate the join as  an  inner join, then the 
optimizer considers the three joins and  will choose the most 
efficient order of joins. Let us  assume the join order becomes 
RA + R3 - X2 + RI in the optimal plan. On  the other hand,  
if we evaluate the join as  a  left outer join, the query optimizer 
cannot  consider reversing the order of R2 w R3 and  thus 
cannot  obtain the same optimal plan. In general,  convert ing a  

left outer join to an  inner join allows the query optimizer to 
deal with a  larger number  of joins. This increases the number  
of alternative plans but will certainly never  generate a  less 
optimal plan than when left outer joins are evaluated as such 
and,  therefore, cannot  be  reordered. 

C. Problem Statements 

Our objective is thus to develop a  mechanism for the system 
to decide whether the joins of a  query should be  evaluated by 
inner joins or left outer joins when objects are instantiated from 
relational databases through views. In addit ion, the system 
decides which relations should be filtered through non-nul l  
filters. For reasons of efficiency, the number  of left outer joins 
and  non-nul l  filters should be  reduced whenever  possible. 

D. Our Approach 

The heterogeneity of the object-oriented model  and  the 
relational model  causes several difficulties in mapping between 
the two models [3 11. Hence we cannot  expect  a  simple solution 
without a  well-defined system model.  The  system model  
should satisfy the following criteria. 

l It provides the context in which we can develop a  simple 
solution to the problem. 

l It is based on  a  standard model  and  can be  easily 
implemented in many existing systems. 

Given the system model,  we develop a  mechanism for 
solving the problem. W e  use only one  parameter that users 
should provide to the system. It is a  non-null option on  the 
object attribute, as  will be  explained in Section IV-A. Users 
do  not even have to know what a  left outer join is. To  
prevent losing nonmatching tuples when nulls are al lowed (by 
default), all joins of a  query are initialized to left outer joins. 
The semantics of the non-nul l  opt ions are interpreted as non- 
null constraint.? on  object attributes, and  they are mapped  to 
corresponding non-nul l  constraints on  the query result. Then 
we replace some left outer joins by inner joins and  add  non-  
null filters to some relations accordingly. Finally, the number  
of left outer joins and  non-nul l  filters are reduced using the 
integrity constraints of the data model.  

In the rest of this paper  we first develop a  r igorous system 
model  to facilitate the mapping between objects and  relations 
in Section IV. The mechanism is developed in Section V, and  
the conclusion follows in Section VI. 

IV. SYSTEM MODEL 

The system model  has  three elements: an  object type model,  
a  view model,  and  a  data model.  The  object type model  def ines 
the structure of objects. No object type model  has  gained 
universal acceptance [32], [33]. Therefore we def ine a  model  
which is common to many existing object-oriented models [ 11, 
[4]-[7]. Note that we do  not (yet) deal  with methods but focus 
on  object structures. The data model  is the relational model  
proposed by Codd [ 191.  The view model  contains a  relational 

“These constraints require the existence of an  object attribute given the oid 
of an  object. W e  would call this constraint an  evistencr constraint if this term 
were not already used in 1201 lo mean  the same concept as the referential 
integrity. 
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Relation Employee (ssn) +% (id) Object Employee 

pj( (a’ ssn) +% (id) Object Project-manager 

(b) 

Fig. 3. The concept of a  pivot relation. 

query’ and  def ines a  mapping between objects and  relations. 
W e  restrict the query to an  acyclic select-project-join query. 

A. Object T,\pe Model  

Many existing object-oriented models support  aggregat ion 
through nested structures and  references. For example, the 
Employee object of Fig. 2  is an  aggregat ion of name,  
dept, and  chi ldren where dept  is a  reference to a  
Department object and  chi ldren is an  aggregat ion of 
name and  birth Date. The children attribute def ines 
an  embedded  substructure of the Employee object. Thus our 
object type has a  similar structure to that of the complex object 
[35]-[40]. 

W e  use value-oriented oid’s [44], [45] and  retrieve them 
from the keys of relation?. Those relations providing oid’s 
are called pitpot relations [ 1  I]-[ 131.  As discussed in Section 
II-B, an  object is mapped  semantically to a  der ived relation 
rather than a  base relation if no  base relation provides the 
same semantics as the object type. Fig. 3  illustrates these 
concepts.  In Fig. 3(a), the Employee relation is the pivot 
relation for the Employee object and  provides its key ssn 
as the oid. Figure 3(b) shows the der ived relation Project- 
manager  of Fig. 1, which becomes the pivot relation for 
the Project-manager object. It is def ined by Employee 

w Project, and  the key ssn of Employee in ssn=manager-ssn 
the join result is retr ieved as the oid. 

W e  do  not consider der ived attributes for our  object type. 
Derived attributes have no  direct mapping to relation at- 
tributes and,  therefore, are computed separately from relation 
attributes. 

An object type is def ined formally as  a  tuple of attributes, 
[Al.Aa;..,X1.X*~...], h  w ere each A, is a  simple attribute 
and  each X; is a  complex attribute. Each attribute is either 
local to the object or inherited from its parent, and  we 
consider both the local and  inherited attributes as def ined in 
an  object type. An attribute is descr ibed in Backus-Naur Form 
as follows. 

‘W e  do not assume the usage of any specific query language for our work. 
‘Tuple identifiers are usable as well. Otherwise we assume the system 

maintains a  mapping between system-generated oid’s and the keys of the 
corresponding relations. 

Type Programmer 
[name: string non-null, dept: Department non-null, salary: integer, 

manager: Employee, task: string, 
Project: [ title: string non-null, sponsor: string, leader: string, 

depart: Department non-null ] ] 

Fig. 4. An example object type. 

A simple attribute has  an  atomic value or a  set of atomic 
values. It is either internal or external to the object. An internal 
attribute has  a  primitive data type such as string, integer, etc., 
while an  e.xternal (or reference) attribute has  another object 
type as its data type. The value of an  external attribute is 
the oid of the referenced object. A complex attribute def ines 
a  subobject or a  set of subobjects by  embedding its type 
definition within the object type. In the same way as an  oid 
is mapped  from the key of a  pivot relation, a  subobject also 
has  an  associated oid that is mapped  from the key of a  base 
relation. However,  the oid of a  subobject is not retr ieved while 
the oid of its (super)object is retr ieved from the key of a  pivot 
relation’. 

W e  need  a  way of telling the system whether the value of 
an  object attribute is al lowed to be  null or not. This is done  
by attaching a  non-nul l  opt ion to an  object attribute. This 
opt ion deliberately declares that a  null value is not al lowed 
for the attribute. It is equivalent to specifying the constraint of 
minimum cardinality >  0  on  the attributelO. Attributes without 
non-nul l  opt ions are al lowed to have null values by default. 

An example is shown in Fig. 4. The  Project attribute 
def ines its own attributes and  becomes a  subobject of the 
Programmer object. It has  its oid mapped  from the key of 
a  pivot relation in the same way the Programmer object 
does.  However,  only the id’s of the Programmer objects are 
actually retrieved. This Programmer object example will be  
used throughout the rest of this paper.  

Given an  object type, we can build a  tree consist ing of its 
object attributes. W e  call such a  tree an  O-tree and  def ine it 
as  follows. 

Definition 4.1: The O-tree of an  object 0  is a  tree that has  
the following properties. 

l Its root is labeled by 0. 
l A leaf is labeled by a  simple attribute of the object 0. 
l An intermediate node  (nonleaf) is labeled by a  complex 

attribute of the object 0. 
An example of an  O-tree is shown in Fig. 5  for the 

Programmer type. 
Here we introduce two functions directly derivable from an  

object type: object set (Oset) and  object chain (Ochain). These 
two functions are used to facilitate mapping between objects 
and  relations. 

‘A subobject of an  object is not a  stand-alone object because it has no  oid. 
“‘Many commercial  tools for bui lding object-oriented system applications. 

KEE (411-1431 for example, suppon this option. 

attribute ::= simple attribute ) complex attribute 
simple attribute ::= internal attribute I external attribute 
complex attribute ::= [ attribute, attribute,...] 1 
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oid name dept salary mana 

oid title sponsor leader &pm 

Fig. 5. The O-tree of the Programmer object type 

Definition 4.2: Given an  object 0, Oset(O) is def ined as a  
function returning the set of the root of the O-tree and  all of 
its nonleaf descendents.  

For example, Oset(Programmer) returns {Programmer, 
Project}. Note each element of an  Oset has  its oid mapped  
to the key of a  pivot relation. 

Definition 4.3: Given an  object 0  and  an  attribute SO of 
the object 0, Ochain(O. s(j) is def ined as a  function returning 
the chain of nodes  from the root (0) of the O-tree to a  node  
labeled .SO, i.e., 0.01. . . .O,z.s~. 

Forexample, Ochain(Programmer,tit le) returns Pro- 
grammer.  Project . title and  Ochain(Programmer, 
Project) returns Programmer.Project. 

B. Data Model  

Integrity constraints [28]-[3O] are a  part of the data model.  
Two kinds of integrity constraints are used in our work: 
referential integrity constraints and  entity integrity constraints. 
As ment ioned in Section III-B. these integrity constraints are 
useful to reduce the number  of left outer joins and  non-nul l  
filters. 

The  referential integrity constraint is def ined as follows. 
Definition 4.4: A referential intecgrity constraint from R.A 

to S.B requires that if R.A is not null then there exists a  
matching value of S.B. That is: 

vu E R.A(u = null V 36  E S.B(a = b)) (4) 

Let us  denote the referential integrity constraint by  an  arrow 
as in R.A H S.B. 

Our  definition of the entity integrity constraint is more 
extensive than the definition used in [30]. 

Definition 4.5: An entity integrity constraint requires one  
or more of the following condit ions to be  satisfied. 

l Primary key constraint: R.A #  null if A is the primary 
key of R”. 

l Range constraint: If R./l is not null then al tJ1R.AH2a2 
where ~1. (12 are non-nul l  constants, and  81,82 are < or 

l Value constraint: R.A = II. or R.A #  a  where (I. is a  
constant which may be  null. 

There can be  other kinds of entity integrity constraint. For 
example. R.A can have a  type constraint such as “the value of 
R.A must be  an  integer.” However,  those def ined in Definition 
4.5 are sufficient for our  work. Fig. 6  shows the schema, 
the referential integrity constraints and  the entity integrity 
constraints of a  sample database.  

” In 1301. only this constraint is used as the entity integrity constraint. 

C. View Model  

Fig. 7  shows the components  of the view model.  A view 
consists of two parts: a  query part and  a  mapping part. The  
mapping part in turn consists of an  attribute mapping function 
(AMF) and  a  pivot descript ion (PD). The AMF def ines the 
mapping between object attributes (S,) and  relation attributes 
(S,.). The  PD consists of a  set of pivot relations (PS) and  a  
pivot mapping function (PMF). The PMF def ines the mapping 
between the pivot relations and  the (sub)objects”. 

A high-level language for defining a  view can be  designed. 
The view should be  preprocessed to generate the mapping 
components  as well as  the query. 

Query Part: Fig. 8  shows the query graph for the Pro- 
grammer object. A query graph (QG) is a  directed connected 
graph. Each vertex is represented by the node  of a  relation R 
labeled with a  filter f and  with the set of attributes 71  projected 
from R. For example, the Pro j-Assign relation is labeled 
with a  filter task = programming and  a  set of projected 
attributes task. Two occurrences of the same relation are 
dist inguished by a  tuple variable denoted as a  subscript. For 
example, the two occurrence of the Emp relation in Fig. 8  
are dist inguished into node  Empl and  node  Empz. Each edge  
represents a  join specif ied in the query. A join is either an  
inner join or a  left outer join. Since left outer joins are not 
symmetric. the edges  are directed. For example, the directed 
edgefromthe Proj-Assign1 nodetothe Project1 node  
denotes a  left outer join from the Pro j-Assign relation to 
the Project relation. 

Mapping Par-t: Now we give a  more r igorous descript ion 
of the mapping part. The  set of object attributes S, of an  object 
type 0  is represented as the set of Ochains, as  follows. 

S, =  (Ochain(0. .s~~)Is~~ E Am(O)} 

Ochain(0, so) was def ined in Definition 4.3. The set of relation 
attributes S, is def ined as follows. 

S,. =  {R.AjA C At&(R)} 

where R is a  relation occurrence in the query part of a  view. 
Since we assume no  der ived attribute, there exists a  one-to- 

one  mapping between S, and  S,.. This mapping information 
is contained in the attribute mapping function. The following 
example shows the mapping between the S, and  S,. of the 
Programmer object. 

Example 4.1 (Attribute Mapping Function). 
Programmer. name c+ Empl.name, 
Programmer.dept i Empl.dept, 
Programmer.salary + Emp~.salary, 
Programmer.manager * Divisionl.manager, 
Programmer.task ++ Proj-Assignl.task, 
Programmer.Project.tit le ++ 
Proj-Titlel.title, 
Programmer.Project.sponsor ++ Sponsorl.name, 
Programmer.Project. leader +, Empy.name, 
Programmer.Project.depart ++ Projectl.dept 

“Or equivalently. between the keys of the pivot relations and the id‘s of 
the (wb)objects. 
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/* Underlined attribute? nre keys. */ 
Division(m, manager, super-division, location) 
Dept(a, budget, phone#) 
Emp(s, name, salary, deptj 
Engineer(ssn, degree, specialty) 
Proj-Assign(emp, d, .zyk! 
Project(d#,dept, leader, sponsor) 
Sponsor(~, phone#, address) 
Proj-Title(proj#, title) 

(a) 

/’ H denotes a referential integrity constraint. ‘J 
Divisionmananer H Em~.name Proj-Assign.emp H Engineer.ssn 
Division.super-division u Division.name Proj-Assign.proj rt Projeet.proj# 
Dept.name c Division.name Project.dept H Dept.name 
Emp.dept - Dept.name 
Engineer.sm ++ Emp.ssn 

Project.leader - Emp.ssn 
Project.sponsor H Sponsor.name 
Project-title.proj# ++ Project.proj# 

(b) 

The keys of all relations shown in the database schema are disallowed from having nulls. In addition, 
Emp.dept and Emp.name are prohibited from having nulls as well. 

Cc) 

Fig. 6. A sample database. (a) Database schema. (b) Referential integrity constraints. (c) Entity integrity constraints 

- : consists of 
- :generates 

Objkct e : defies 

PS: the set of pivots 0~: object set Ochain: object chain 
So: the set of Ochains of object attributes appearing in the object type 
Sr: the w of relation attributes appearing in the query 

Fig. 7. Mapping between objects and relations. 

“programming” Proj - Assign,}). A formal definition of a 

As shown in Fig. 3, a pivot relation is either a base relation 
or a derived relation. If it is a base relation, its key is mapped 
to the oid. If it is a derived relation, the key of one of its 

derived relation is as follows. 

base relations is mapped to the oid. Fig. 8 shows two pivots, 
Programmer1 and Project-l. Here Project1 isthenode 
of a base relation and Programme r1 is the node of a derived 
relation defined by (EngineerI, {Engineer1 w utask = SStl=ZSStl 

Definition 4.6: A derived relation of an object type 0 is 
an ordered pair (Rt,, E) where Rb is a base relation whose 
key is mapped to the oid of the object type 0, and E is a 
select-join13 expression such that, for all possible instances of 
the relations in E: 

l n Key(Rb) E s nKey(R,,) Rb. 
l l-‘(E <Rb E A &ey(&,) E’ c &z,,(R,,) El where 

E’ <fib E denotes that E’ is a proper sibexpression of 
E and have & in common with E. 

That is, the result of evaluating E produces a subset of the 
keys available from & and there is no poper subexpression E’ 
that, when evaluated, produces a subset of the keys produced 

“Selection is not required while join is required. 

from E. The second property of the above definition is 
the minimality property. Note that the definition lacks the 
uniqueness property. Therefore there can be a superexpression 
E” that produces the same set of keys. In this case, we always 
choose the minimal expression E. 

For every object and its subobject, there always exists one 
and only one relation occurrence whose key is mapped to the 
oid. In other words, there is a one-to-one mapping between 
the object set defined in Definition 4.2 and the set of pivot 
relations (PS). This mapping information is contained in the 
pivot mapping function. For example, the mapping between 
the Oset and PS of the Programmer object is as follows. 

Example 4.2 (Pivot Mapping Function): 

Programmer * Programmerl,Project +-+ Project1 

For each pivot relation 11 E PS begin 
If p is a base relation 

As mentioned in Section IV-A, we associate value-oriented 
oid’s with an object and its subobjects. These oid’s are 
invisible in the type definition, and their mappings to relation 
attributes are not explicitly specified in the attribute mapping 
function. These mappings are derived from the information 
stored in the pivot description using the following algorithm. 

Algorithm 4.1: 

then append ‘Ochain(0, PMF(P)).id tf 
p.Key(p)’ to AMF. 

else /* p is a derived relation */ begin 
Find the base relation &, of p. 
Append ‘Ochain(0, PMF(p)). idH 
&.Key(&,)’ to AMF. 

end. 
end. 

For example, given the set of pivot relations and the 
pivot mapping function of the Programmer view, Algorithm 
4.1 derives the following mappings between the id’s of the 
Programmer object and its Project subobject and their 
corresponding pivot relation keys. These are appended to the 
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Fig. 8. The query graph for the programmer object. (The keys of Engineer 
I and Prqject I are mapped to the id’s of the Programmer object and the 
Project subobject, respectively. Dotted lines denote pivots.) 

AMF: 

{Programmer. id ++ Engineeri.ssn, 
Programmer.Project. id +-+ Projecti.proj#}. 

There is a  constraint on  the definition of the attribute 
mapping function. Let us  consider two object attributes SO and  
si that belong to the same level of an  O-tree and  their mapped  
relation attributes AMF(sa) and  AMF(si). Then AMF(sa) and  
AMF(sl) must either belong to the same relation or there must 
exist a  one-to-one cardinality relationship between them. 

The attribute mapping function is essential for making it 
simple to map  between objects and  relations, as  will be  
demonstrated in the following section. 

V. DEVELOPMENT OF THE MECHANISM 

Now we descr ibe the mechanism for prescribing joins in a  
query as inner joins or left outer joins, and  also for generat ing 
non-nul l  filters for some relations in the query. W e  first present 
an  overview of our  mechanism and  then discuss each step in 
detail. 

There are two sources of nulls retr ieved from databases.  
One  is from the nulls stored in the tuples, and  the other is 
from the nulls inserted for nonmatching tuples of an  outer 
join. Inner joins create nulls from the first source only, while 
outer joins create nulls from both sources. Objects allow nulls 
by  default and  need  only one  kind of outer join, left outer 
join, as  explained in Section III-B. Therefore our strategy is to 
initialize all joins of a  query as left outer joins and  then replace 
part of them by inner joins at each step of our  mechanism. 

The steps of our  mechanism are as follows. 
I) Compile the object type 0  and  generate the object set 

(Oset) and  the set of Ochain(0. $0)‘~ for all the attributes 
def ined in 0. 

2) Preprocess the view and  generate the query and  the 
mapping part: AMF, PMF, and  PS. 

3) Derive the mappings between oid’s and  the keys of pivot 
relations using Algorithm 4.1, and  add  the result to the 
attribute mapping function. 

4) Initialize all joins of the query as left outer joins. 
5) Replace all joins that appear  in the definition of der ived 

relations by inner joins. (See Section V-B.) 
6) Map  non-nul l  opt ions on  object attributes to non-nul l  

constraints on  the query result. Replace some joins by 

7) 

inner joins and  add  non-nul l  filters to some relations 
accordingly. (See Sections V-C and  V-D.) 
Find the left outer joins that produce the same tuples 
as inner joins due  to referential or entity integrity con- 
straints, and  replace those left outer joins by inner joins. 
Find also the relations whose non-nul l  filtered attributes 
cannot  have nulls due  to entity integrity constraints, and  
remove the non-nul l  filters from those relations. (See 
Section V-E.) 

B. Joins W ithin a  Derived Relation 

As ment ioned in Section II-B, a  der ived relation is a  
conceptual  relation def ined from base relations via a  select-join 
expression, and  this provides an  abstract ion of base relations 
so that the semantics of the der ived relation directly matches 
the semantics of the instantiated objects. 

All joins specif ied within a  der ived relation must be  inner 
joins, as  shown by the following theorem. 

Theorem 5.1: Let us  consider an  object type 0  and  a  
der ived relation (RI, E) def ined according to Definition 4.6. 
If E = RI w Rz w w R,, , then all the joins from RI 
through R,, are inner joins. 

Proof: If we assume a  join from R; to R,+l is a  left 
outer join for an  arbitrary %  E [l, 71  - l] while the others are 
inner joins, then the following is true. 

KIK~~(~~)(R~ w R2 w ... w R, w Ri+, w ... w R,) 

=  n  (RlwR2w...wRi) (5) 
h;m(R~ ) 

That is, there exists a  proper subexpression that, when evalu- 
ated, produces the same set of keys available from RI. This 
violates the second condit ion required of E in Definition 4.6. 
Therefore, all the joins in E must be  inner joins. Q.E.D; 

For example, given a  der ived relation (Engineeri, 
{Engineer1 w o task = Sbll=SS,, “programming” 
Proj - Assigni}) def ined to provide the semantics of 
the Programmer object, the join between Engineer1 
and  Pro j-Assign1 must be  an  inner join. If the join 
is evaluated as a  left outer join, it retrieves all tuples of 
Engineerl, not just those corresponding to programmers,  
who are def ined as the engineers working on  a  programming 
task in the assigned projects. 

Thus, given the set PS of pivot relations: 
Algorithm 5.1: 1. For each der ived relation (Rb, E) in the 

set of pivot relations (PS), 
replace all joins in E by inner joins. 

C. Mapping Non-nul l  Opt ions to Non-nul l  
Constraints on  the Query Result 

Let us  consider an  object 0  whose attribute so has a  non-  
null option. It requires there should exist a  non-nul l  sa  given 
the oid of the object. Let us  denote this non-nul l  constraint as  
O.id +  so. If SO is a  simple attribute, it is non-nul l  if its value 
is not null. On  the other hand  if su  is a  complex attribute, it 
def ines a  subobject.  An object is non-nul l  only if its oid is non-  
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null. We thus interpret the semantics of non-null so according 
to the following rule of non-null constraint. 

Rules 5.1 (Non-null Constraint): Let us at this point con- 
sider Ochain( 0, s,) E OO.O1.  . . . .On.so. If SO has a non-null 
option, then, given O,.id, 

l if SO is a simple attribute, i.e., O,.id j SO, then SO cannot 
be null; 

. if so is a complex attribute, i.e., O,.id 3 so.id, then 
so.id cannot be null. 

For example, given the Programmer object of Fig. 4, 
the non-null options on name and dept attributes are in- 
terpreted as Programmer.id + name and Program- 
mer.id =+ dept, respectively, because name and dept 
are simple attributes. Besides, the non-null options on title 
and depart are interpreted as Project.id =k title 
and Project , id 3 depart, respectively. Beware they 
are not interpreted as Programmer.id j title and 
Programmer.id=+depart because title and depart 
are the (direct) attributes of P r o j ect subobject instead of 
the Programmer object. On  the other hand, if there were 
a non-null option on Project, it would be interpreted as 
Programmer.id+Project. idbecauseProjectisa 
complex attribute. 

Can we map the non-null constraint defined by Rule 5.1 to 
the corresponding non-null constraint on the query result? It 
is possible in our model because the oid of each (sub)object 
always has a corresponding pivot relation key. The attribute 
mapping function in Example 4.1 showed this correspondence 
for the Programmer object. Using the correspondence, the 
non-null constraints on the name and dept attributes of 
the Programmer object are mapped to Engineerl.ssn + 
Emp, .name and Engineer1 .ssn + EmpI .dept, respectively. 
Likewise, if Project had the non-null option, its constraint 
would be mapped to EngineerI.ssn + Projectl.proj#. 
The non-null option on the title attribute is mapped 
not to Engineerl.ssn + Proj - Titlel.title but to 
Projectl.proj# + Proj - TitleI.title because title 
is defined not as an attribute of Programmer object but 
as an attribute of Project subobject. For the same reason, 
the non-null option on the depart attribute of Project is 
mapped to Project,.proj# 3 Projectl.dept. 

More formally, a non-null option on the attribute SO of an 
object type 0 is translated into the non-null constraint on the 
query result as follows. 

Algorithm 5.2: 
I) n o,lL.s~ := Ochain(O. SO) z 00.01.. .O1l.s~. 
2) R,.A := AMF(Ro,,,.id). I* A is always the key of Rp. */ 
3) If SO is a simple attribute 

then R,.B := AMF(I~o,~~.so) 
else R,? .B := AMF(IIo,,, .SO) . . /* If SO is a complex 
attribute, B is the key of R,. */ 

4) Output the constraint R,.A =$ R,.B. 

D. Prescribing Joins and Generating Non-null Filters 
With the non-null constraints on the query result, we trans- 

late them into the corresponding inner joins and non-null filters 

of the query. Given the constraint R,.A 3 R,.B obtained 
from Algorithm 5.2, it is done as follows. 

Algorithm 5.3. 
1) Replace the filter fJ on R, by fs A (B # null). /* 

Generate a non-null filter. */ 
2) /* Prescribe a join. */ 

a) Find all directed join paths from Rp to R,. 
b) For each path found in Step 2(a), 

replace all joins on the path by inner joins. 
For example, given the non-null constraints established 

in Section V-C, the following non-null filters are 
generated in the query of the Programmer object: 
Emp,.name # null.EmpI.dept # null.Projectl.dept # 
null,Proj - TitleI.title # null. Besides, the 
following left outer joins are replaced by inner joins: 
Engineer1 w Empl.Projectl W  Proj -Title,. 

Now we prove the correctness of Algorithm 5.3 with the 
following theorem. 

Theorem 5.2: Given a join path X1 w Rz w . .. w  R,, 
and a non-null constraint RI .A1 + R,, .il,, on the join result, 
the materialized join result satisfies this non-null constraint if 
and only if all the joins are inner joins and R,, is filtered by 
A,, # null. 

Proof: If par-t: If all joins on the join path are inner joins, 
any nonmatching tuples are discarded. Then, the attribute A, 
in the join result can have nulls only if A,, is not a join attribute 
and some tuples of R,, have null A,,. (If it is a join attribute, 
any tuple of R, with null rl,, is discarded by an inner join.) 
However,  tuples with null A,, are removed from R, by the 
given non-null filter. Therefore the constraint is satisfied. 

Only ifpart: We prove this part by contradiction. Let us first 
assume Ri w  Ri+l is a left outer join for some %  although the 
constraint is satisfied and let R;+, have nonmatching tuples. 
Then a null R,,.A, is retrieved from the null tuples appended 
to the tuples of Ri that have no matching tuples in RL+l. 
This contradicts the assumed constraint. Therefore all the joins 
must be inner joins. Next, let us assume R,, is not filtered by 
A,, # null though the constraint is satisfied and all joins are 
inner joins. Then null R,, .A,, is retrieved from the nulls stored 
in R,.A,, if A,, is not a join attribute. This contradicts the 
assumed constraint. Q.E.D. 

E. Reducing the Number of Left Outer 
Joins and Non-null Filters 

We can further reduce the number of left outer joins and 
non-null filters by using integrity constraints. 

Considering entity integrity constraints, some non-null fil- 
ters are removed if they are defined on attributes that cannot 
have null. A typical case is when the attribute is a key (primary 
key constraint) or any other non-null attribute designated in 
the schema definition (value constraint). For example, we can 
remove Emp, .name # null and Emp, .dept # null among the 
four non-null constraints generated in Section V-D because, as 
it was shown in Fig. 6(c), those two attributes are prohibited 
from having nulls. 

We can also replace some left outer equijoins with inner 
equijoins if we consider referential integrity constraints. Since 
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a referential integrity R.A H S.B allows R.A to be null, we 
define a stronger condition by introducing a variable min as 
follows. 

Definition 5.1 (min): Given a join Ri w  RJ, let min;j 
denote the minimum number of matching tuples in Rj for 
each tuple in Ri. Note minij is not necessari ly the same as 
minj;. 

Besides, some left outer non-equijoins can be replaced by 
inner non-equijoins if we consider entity integrity constraints 
such as range constraints. 

Using only the semantics of min without considering the 
instances of relations14, we define the following rules for 
deciding whether min is greater than zero or not. MIN(X.A) 
denotes the minimum non-null value R.A can have, and 
MAX(R.A) denotes the maximum non-null value R.A can 
have. MIN(R.A) and MAX(R.A) are known from the range 
constraints or value constraints, if there are any, on R.A. 

Rules 5.2: 
l Given a single join predicate ABB for a join between two 

relations R; and Rj, min;j > 0 if Ri.A is a non-null 
attribute and one or more of the following conditions are 
satisfied. 

8 = ’ = ’ and R, .;1 - R, .B and the filter f, on R, 1s empty, or 

6’ = ‘ > ’ and MtN(R,./t) 2 MAX (R,.B). DT 

6' = ' > ‘and MtN(R,.A) > MAX(R,.B).or 

8 = ‘ < ’ and MAX(R,.;1) < MIN(R,.B), or 

6’ = ’ 5 and MAX(R,.<-t) 5 MIN(R,.B), or 

8 = ’ # ’ and (MIN(R,.;l) > MAX(R,.B) or MAX(R,.A) < MIN(R,.B)). 

Otherwise min.- = O15. 
l Given a conjunkIe join predicate AlHlBl A AZ&B2 A 

. . . A Ak0kBk for a join between R; and R,, min,j > 0 
for the conjunction of join predicates if mini, > 0 for 
every single join predicate. Otherwise mini, = 0. 

l Given a disjunctive join predicate Al01 B1 V AZ&B* V 
. V ill;BkBk for a join between R, and Rj, min;j > 0 

for the disjunction of join predicates if mini, > 0 for af 
least one join predicate. Otherwise mini, = 0. 

l Given a join path between two relations, such as Ri w  
&+I w .. . w  R,, min;j > 0 if mink,k+l > 0 for 
k  = 1:, . . ’ ,3 - 1. Otherwise min;j = 0. 

If mini, > 0 for a join path from Ri though R,, we can 
replace all joins on the path by inner joins and still get the same 
query result. Now we describe an algorithm for reducing the 
number of left outer joins using min. 

Algorithm 5.4: 
1) Find all join paths between pairs of nodes, such as R; 

and Rj, whose minij > 0. 
2) For each join path found in Step 1, 

replace all joins on the path with inner joins. 

141n other words, we ignore the fact that min may be accidentally greater 
than zero at the instance level though it is judged to be equal to zero at the . 

For example, in the query of Programmer object we 
find a join path from Engineer, to Division1 for which 
all three joins have min > 0 because, as shown in Fig. 6, 
there are referential integrities Engineer1 .ssn H Emp, .ssn, 
Emp, .dept H Dept 1 .name, Deptl name +- Division1 .name, 
and there are integrity constraints prohibiting nulls for 
Engineerl.ssn,Empl.dept, and Deptl.name, and none of 
the relations on the join path has a nonempty filter. We also 
find a join path from Proj - Assign1 to Project 1 for which 
the min > 0. All these joins are replaced by inner joins. Note 
Project1 w Emp2 and Project1 w Sponsor1 cannot 
be replaced with inner joins because Project . leader and 
Project . sponsor are not non-null attributes. 

F. Summary of the Mechanism 

Given a query with initial left outer joins, the overall 
mechanism developed in Section V is as follows. 

Algorithm 5.5: 
1) 

2) 

3) 

4) 

/* Replace all joins within derived relations with inner 
joins. /* 
For each derived relation (Rb> E) in the set of pivot 
relations (PS), replace all joins in E by inner joins. 
For each attribute so of the object 0 that has a non-null 
option, 

a) /* Map the non-null option to a non-null constraint 
on the query result */ 

i) I~~~,,.so := Ochain(0. so) = 00.01.. . .O,l.sg. 
ii) R,..4 := AMF(Ro,,,.I:d). /* A is always the key 

of R,. *I 
iii) If SO is a simple attribute 

then R,.B := AMF(~&,,,.s~~) 
else R,.B := AMF(Q~,,,.s~,.id). /* If SO is a 
complex attribute, B is the key of R, . */ 

iv) Output the non-null constraint R,.A + R,.B. 
b) /* Generate a non-null filter and prescribe a join. 

“I 
i) Replace the filter fs on R, by fs A (B # null). 

/* Generate a non-null filter. */ 
ii) /* Prescribe a join. */ 

A) Find all directed join paths from R, to R,. 
B) For each path found in Step 2(b)iiA, 

replace all joins on the path by inner joins. 

/* Remove all non-null filters that can be shown to be 
redundant using the entity integrity constraint. */ 
Remove R.A # null such that 4 is a non-null attribute. 
/* Replace left outer joins if they prove to be equivalent 
to inner joins.*/ 

a) Find all join paths between pairs of nodes, such 
as R; and R,. whose mini, > 0. 

b) For each join path found in Step 1, 
replace all joins on the path with inner joins. 

The graph of the query for the Programmer object, labeled 
semantic level. 

15min ,, = 0 does not mean that min,, is alwo~s equal to zero. Rather, 
with joins and non-null filters, is shown in Fig. 9. All the joins 

it means that it is not known at the semantic, le\~I whether min, , is greater of the query except those between Pro ject.1 and Empz and 
than zero. between Project1 and Sponsor1 have been prescribed as 
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Fig. 9. The query graph for the F  rogrammer object with joins and non-null  
filters, (1 denotes an  inner join, and LO denotes a  left outer join.) 

inner joins. Two non-nul l  filters have been  at tached as the 
selection condit ions on  the Project1 and  Proj-Title1 

nodes. 

VI. CONCLUSION 

W e  developed a  mechanism for automatically prescribing 
inner or left outer joins for the joins of a  query used to 
instantiate objects from a  relational database.  It also generates 
non-nul l  filters for some of the relations in the query. W e  
developed a  r igorous system model  that facilitates the mapping 
between objects and  relations. The system model  consists of 
an  object type model,  a  view model,  and  a  relational data 
model.  These models are based on  a  standard mode1  or well- 
known models. W e  added  a  few new components  to the object 
type model  and  view model.  These components  are easily 
implementable in existing systems. 

Our  result demonstrates how simple the mechanism be- 
comes once the system model  is establ ished. The only criterion 
for the mechanism to use is the non-nul l  opt ion on  object 
attributes, the semantics of which are mapped  to the non-  
null constraint on  the query result. The  number  of left outer 
joins and  non-nul l  filters is reduced whenever  possible using 
the integrity constraints so that the query is processed more 
efficiently. 
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