
An Update-Risk Based Approach to TTL Estimation
in Web Caching�

Jeong-Joon Leey, Kyu-Young Whangy, Byung Suk Leez, Ji-Woong Changy

yDepartment of Computer Science and
Advanced Information Technology Research Center (AITrc)

Korea Advanced Institute of Science and Technology (KAIST)
373-1, Kusong-Dong, Yusong-Gu, Taejon, Korea

e-mail:fjjlee,kywhang,duribabag@mozart.kaist.ac.kr
zDepartment of Computer Science

University of Vermont
Burlington, Vermont, U.S.A.

email: bslee@cs.uvm.edu

Abstract

Web caching is an important technique for accelerat-
ing web applications and reducing the load on the web
server and the network through local cache accesses. As
in the traditional data caching, web caching poses the well-
recognized problem of maintaining cache consistency. Web
caching, however, has the leeway of delaying the refresh-
ment of caches when the web server updates the original
data, i.e., web caching tries to get better performance al-
lowing tolerable inconsistency. This weak consistency re-
quirement introduced the concept of time-to-live (TTL: the
time during which the cached data item is expected to be
valid) in the face of future updates. Subsequently, a number
of methods have been invented to have the cache server esti-
mate the TTL. However, the two well-known TTL estimation
methods—the fixed TTL method and the heuristic method—
do not allow intuitive understanding of the estimation pro-
cesses and lack theoretical reasoning behind them, disal-
lowing administrators from configuring the cache server
by their intention. To mend these deficiencies, we propose
theupdate-risk based TTL estimation method. This method
uses a formal, yet intuitive, approach based on probabilistic
analysis. In the proposed method, users provide the update
risk as the probability that the original data will be updated
within the estimated TTL. Then, based on our model, the
cache server calculates the value of the TTL using the up-
date risk. The results of our experiments, performed using

�This work was supported by the Korea Science and Engineering Foun-
dation (KOSEF) through the Advanced Information Technology Research
Center (AITrc).

the logs of a real cache server, show experimentally that the
measured update risk closely matches the one used to es-
timate the TTL. Moreover, the notion of the update risk is
clear in its intention and semantics. These confirm the su-
periority of our method to the conventional ones. We also
show the impact of update risk on performance and con-
sistency in order to help administrators select an appropri-
ate value for update risk to obtain performance and consis-
tency desired. In addition, we reilluminate the two afore-
mentioned conventional methods in light of our method.

1 Introduction

As the web grows into an infrastructure for disseminat-
ing information, so does the volume of data exchanged on
the web. This explosive growth of the data volume is over-
loading the web servers and the communication network,
causing performance degradation. Web caching offers a
solution to this problem by retaining frequently used web
pages on the client side [1, 2, 18]. Recent research outputs
in this area have been incorporated into such commercial
products as Inktomi [10], Imimic [11], CacheFlow [13], In-
foLibria [14], and ICS [12].

Like any cached data, cached web pages are copies of
the original data (from the web server), and therefore, need
to be synchronized with the original data. This consistency
requirement is rather weak in the case of web caching as dis-
cussed in the references [7] and [15]. That is, it allows the
synchronization to be delayed, and thus, allows the clients
to access outdated data for some time [7, 8].

Synchronization delay affects consistency and perfor-
mance of cache. Larger synchronization delay results in
lower consistency, but better performance of cache. In other
words, cache consistency and performance have a trade-
off relationship. Therefore, the cache server administrator
should find a reasonable compromising point between con-
sistency and performance of cache.

The TTL methods are widely used for consistency main-
tenance in the web caching [8]. In these methods, cached
data are assumed valid (i.e., up-to-date) for a certain du-
ration, called the time–to–live (TTL), from the point1 of
caching [8]. The TTL is determined using the values of
fields such as Expire and Max-agethat accompany a web
page retrieved from a web server. The fields, however, are
frequently empty [1], and therefore, a number of techniques
have been proposed to estimate the TTL from other sources
in such a case [4, 6, 8]. Two well-known techniques are the
fixed TTL method[9] and the heuristic method[4, 8]. The
former always assigns the same TTL to every data item,
whereas the latter determines the TTL as a portion of the
interval between the point of caching and the last point in
time the original data was modified (as found in the Last-
Modifiedfield).

The two conventional methods have two major prob-
lems. First, they are hardly justifiable because they are not
founded upon a formal theory. Second, they hardly attach
any intuitive meaning to the TTL they estimate. For in-
stance, the fixed TTL method disregards the discrepancy in
the update frequencies of individual web pages, and there-
fore, fails to reflect the idiosyncratic update patterns of the
web server. The heuristic method uses an arbitrary portion
of the time since the last update and consequently fails to
convey any sensible meaning to users. In this paper, we
solve these problems by employing a formal method that
determines the TTL based on a sound reasoning while con-
veying an intuitive meaning about the estimated value.

In our formal method, we propose the notion of the up-
date riskassociated with the TTL. For a given cached data
item, its update risk is defined as the probability that the
data item will become outdated before the TTL expires. On
the flip side, (1 � update risk) reflects the credibility that
the cached data item will remain up-to-date until the TTL
expires. This notion of the update risk (or, equivalently, the
credibility) is intuitive to users. In our work, we model the
number of update occurrences as a Poisson process, which
is known to be an effective probablistic model for the num-
ber of updates on the web data [5]. Then, we develop a
probabilistic model for determining the TTL given an up-
date risk.

We also demonstrate the viability of our method by
showing that the update risk measured from a real cache

1In this paper, the word “point” denotes a point in time as distinguished
from an interval of time.

server log using the estimated TTL closely matches the up-
date risk given by the user to estimate the TTL. In addition,
we reilluminate the two aforementioned conventional meth-
ods in light of our method.

The rest of the paper is organized as follows. In Sec-
tion 2 we give an overview of the web caching techniques
and describe the conventional TTL estimation methods. In
Section 3 we explain the concept of the update risk and de-
velop a mechanism for determining the TTL based on the
update risk. In Section 4 we describe the experiments per-
formed and present the results. In Section 6 we compare
our method with the two conventional methods in terms of
the update risk. We conclude the paper in Section 7.

2 Related Work

In this section we first briefly review the architecture of
web caching, and then, discuss three existing cache consis-
tency maintenance approaches including the TTL methods.
We also give a detailed explanation of the two conventional
TTL estimation methods and their intrinsic defects.

2.1 Caching architecture

Based on their positions in the network, web cache
servers are classified into the reverse cache server, the trans-
parent cache server, and the proxy cache server as shown
in Figure 1[20]. First, the reverse cache server is placed in
front of the web server. It reduces the load on the web server
by responding to clients’ requests on behalf of the server,
thereby helping the server scale up to handle heavy work-
load. Second, the transparent cache server and the proxy
cache server are used for multiple clients to share and reuse
the data accessed in the same local area network (LAN).
These cache servers offer the following benefits obtained by
obviating the accesses to remote servers: reduced response
time, reduced network traffic, and reduced load on the web
server. To use the proxy cache server, a client should explic-
itly indicate it in its configuration. To use the transparent
cache server, a client does not have to because all requests,
regardless of the client’s configuration, are redirected to the
cache server by a network switch. The client cache in Fig-
ure 1 is simply an internal cache of the individual browsers.
Among these cache servers, our focus is on the client-side
cache server. Therefore, from now on our scope is confined
to the transparent cache server and the proxy cache server.

2.2 Cache consistency maintenance

We categorize and review existing cache consistency
maintenance methods into three approaches in the context
of web caching: the pull approach, the push approach, and
the TTL approach. These approaches are distinguished by

Web
Server

Reverse
Cache Server

Internet Transparent Cache/
Proxy Cache Server

Web Browser

Client
Cache

Web Browser

Client
Cache

Web
Server

Reverse
Cache Server

Internet Transparent Cache/
Proxy Cache Server

Web Browser

Client
Cache

Web Browser

Client
Cache

Web Browser

Client
Cache

Web Browser

Client
Cache

Figure 1. Classification of web cache servers
by their positions in the network.

which side between the cache server and the web server
takes the initiative of caching. In the pull approach, it is
the cache server that connects to the web server and checks
the consistency of cached data items. For this purpose, the
cache server periodically polls the web server and refreshes
its cache if the original data has been updated. In the push
approach, by contrast, it is the web server that connects to
the cache server and informs it of the updates of the cached
data items. The web server sends the identifiers of the up-
dated data items so that the cache server may invalidate
them. In the TTL approach, the cache server assumes that
the cached data item is valid and does not connect to the
server until the TTL expires. The TTL is either provided
by the web server or estimated by the cache server. When
the TTL expires, the cache server inquires of the web server
and re-caches the data item if it has been updated by the
server, otherwise re-estimates the TTL. We call this process
revalidation.

Among the three approaches, the TTL approach is re-
garded as the most suitable for the web environment [8]. In
the pull approach, the polls sent by multiple cache servers
increase the workload on the web severs and therefore delay
the response. The push approach requires the web server
to trace the data items cached by the cache servers. Be-
sides, the web server may inform a cache server of updated
data items after the cache server has already discarded them.
These overhead impairs the scalability of the server. The
push approach, therefore, is a method more appropriate for
the reverse cache server. In the TTL approach, however, the
cache servers do not connect to the web server during the
TTL, thus loading the web server to a lesser extent com-
pared with the pull or push approach. Although the TTL
approach leaves the cache server unsynchronized with the
web server during the TTL, users’ acceptance of weak con-
sistency relieves it from being a problem. In addition, the
TTL approach facilitates adding new cache servers, as the
pull approach does, and is not necessarily harder to im-
plement than the other two approaches. Implementing the
TTL approach involves calculating TTLs and revalidating
cached pages but obviates the pollings or interrupts needed

for asynchronous I/O’s in the pull approach and the trac-
ing and broadcasting of updated pages needed in the push
approach For these reasons, the TTL approach is accepted
as the most practical and effective approach to maintaining
web cache consistency.

2.3 Conventional TTL estimation methods

The two conventional TTL estimation methods—the
fixed TTL method and the heuristic method—are purely
time-based methods. That is, they consider only time as
the criterion for estimating the TTL. We review these two
methods briefly here and point out their problems.

The fixed TTL method is used in IIS of MicroSoft [9]. It
assigns the same TTL to all data items regardless of the time
of update, and thus, is simple and easy to implement. How-
ever, the reality is that different data items are updated at
different rates, and even the same data item is updated at dif-
ferent rates at different times. Thus, this method lacks any
consideration for distinct and time-variant update patterns
of data items at all. This deficiency deprives the method
of its credibility in setting a reasonable TTL. If the TTL is
set too large, the cache server ends up using obsolete data
longer than necessary. If the TTL is set too small, it ends
up revalidating unnecessarily often, thus wasting the system
and network resources.

The heuristic method has been proposed as part of the
HTTP/1.1 standard [8]. It estimates the TTL based on the
interval between the current caching point (Now) and the
last modification point (Last-Modified) of a data item. More
specifically, as shown in Figure 2, it estimates the TTL as
(Now� Last-Modified) �M , where M is an arbitrary pro-
portion constant determined heuristically. An upper limit of
0.1 is recommended as the value ofM in HTTP/1.1, and 0.5
by Chankhunthod et al. [4]. Neither upper limit has any the-
oretical reasoning behind it because it has been chosen with
a guess or based on an experience. Although better than
the fixed TTL method in reflecting the data update patterns
of the web server, this method is still not flexible enough
unless the updates occur regularly. Moreover, there is no
intuitive meaning we can associate with the value of M .

From the problems observed in these two methods, we
realize the need for a new method that enables us to adjust
the TTL better to the actual occurrences of updates. We
need an approach that is formal enough to provide a the-
oretical background and intuitive enough to allow a plau-
sible explanation of the estimated TTL as the compromise
point between the cache consistency and the performance
of cache server.

.... NowLast-Modified

Estimated TTL
= (Now – Last-Modified) × M

Now – Last-Modified

Now + TTL.... NowLast-Modified

Estimated TTL
= (Now – Last-Modified) × M

Now – Last-Modified

Now + TTL

Figure 2. TTL estimation using the heuristic
method.

3 Update-Risk Based TTL Method

In this section we give a formal definition of the update
risk and then derive a formula for estimating the TTL given
the maximum allowed update risk.

3.1 Update risk

Setting the TTL of a cached data item is based on the
hypothesis that the data item will remain valid until the TTL
expires. However, the hypothesis may prove false. We call
its probability the update risk—the risk that the cached data
item is updated before the TTL expires—and call such a
TTL a falseTTL.

Definition 1: The update risk �x of a cached data item
x for a given TTL tx is defined as the probability that the
original data item of x is updated before the TTL expires.
�

Figure 3 shows how the update risk �x of a cached data
item x can be obtained from the probability density distri-
bution of updating the data item. By Definition 1, �x is the
probability that the data item x is updated between the cur-
rent caching point Now and Now+tx. This probability can
be calculated by integrating the probability density distribu-
tion in the range.

Now + t x

Update
probability
density

Time

Update risk(ρx)

Now Now + t x

Update
probability
density

Time

Update risk(ρx)

Now

Figure 3. Update risk and update probability
distribution.

Definition 1 is made from the perspective of a web
server. In contrast, Definition 2 gives an alternate definition
from the perspective of a client.

Definition 2: The update risk �x of a cached data item x for
a given TTL tx is defined as the maximum probability that
an arbitrary access to x returns an invalid (i.e., outdated)
data item. (In other words, the probability that a client ac-
cesses an invalid data item is no more than the update risk
of the data item.) �

In Figure 4, tref denotes the point in time the client
accesses a data item x. Then, the probability that x be-
comes invalid by tref is the same as the probability that
x is updated between Now and tref . This probability is
obtained by integrating the update probability density dis-
tribution from Now to tref and is the same as the shaded
area. Therefore, the probability of x being invalid reaches
the maximum value when tref becomes equal to Now+tx,
and the maximum value is equal to the integral of the update
probability density distribution from Now to Now+tx. The
integration returns the update risk of the data item x given
the TTL tx.

Now + tx

Update
probability
density

Time

Now tref Now + tx

Update
probability
density

Time

Now tref

Figure 4. The probability of accessing an in-
valid data item at the cache access point tref .

3.2 Update-risk based TTL estimation

As mentioned, the TTL is estimated for a given value of
the update risk. Using the probabilistic analysis method, we
derive a formula for the estimation here.

Assuming that the updates are independent events, we
model the number of updates as a Poisson process. Let
N(T) be the number of events occurring in the interval of
T , and let P [C] be the probability that the condition C is
true. Then, given the Poisson constant �—the average num-
ber of occurrences of an event in unit time (i.e., the average
frequency of an event)—the update risk of a data item is
expressed as in Theorem 1.

Theorem 1: For a given data item x, if the average update
frequency is �x and the TTL is tx, then the update risk of
x, denoted by �x, is obtained as:

�x = 1� e��xtx (1)

PROOF: Since �x is the probability that up-
dates occur at least once in the interval tx,
�x = P [N(tx) > 0] = 1 � P [N(tx) = 0]. Because
P [N(tx) = 0] = e��xtx by the definition of the Poisson
process, �x = 1� P [N(tx) = 0] = 1� e��xtx . �

Corollary 1: For a given data item x, if the average update
frequency is �x and the update risk is �x, then the TTL of
x, denoted by tx, is obtained as:

tx = �

1

�x
log(1� �x) (2)

PROOF: We obtain the Equation (2) trivially from Equa-
tion (1). �

Figure 5 shows the update risk �x of a cached data item
x as a function of the TTL tx (Equations (1) and (2)). In
Figure 5 we observe that the update risk �x increases faster
when the TTL is smaller, and slower when the TTL is larger,
eventually saturating toward 1.0. We also see that the TTL
tx of a data item x increases as the update risk �x increases.
This means that we need a longer TTL to accommodate a
higher update risk.

1

TTL(tx)

Update risk(ρx)

ρx = 1– e-µxtx

tx =–(1/µx�log(1-ρx)

Figure 5. Update risk as a function of TTL.

In the context of this paper, the Poisson constant �x de-
notes the average frequency of updates. In practice, as il-
lustrated in Figure 6 we estimate �x from the previous K
update occurrences (as in the LRU-K [17]) recorded in a
cache log file. In this case, we can use an alternate formula
shown below for estimating the TTL. Let us first define the
backwardK-update distance of a data item x (BUDx(K))
as a function of K that, given the value of K, returns the
interval between the caching point Now and the K-th last
update point of x. Then, since K updates occurred during
BUDx(K), �x is calculated as:

�x =
K

BUDx(K)
(3)

It is worthwhile to consider the appropriate value of K in
Equation (3). There is no hard rule for this, but �x is mean-
ingful when K falls within the range of temporally local

Last 1st update
point of x

Now

Backward 1-update distance of x

Last 2nd update
point of x

Last K-th update
point of x

Backward 2-update distance of x

Backward K-update distance of x

Last 1st update
point of x

Now

Backward 1-update distance of x

Last 2nd update
point of x

Last K-th update
point of x

Backward 2-update distance of x

Backward K-update distance of x

Figure 6. Backward K-update distance of a
data item x.

updates. For the rest of the paper, �x denotes the value ob-
tained as in Equation (3) unless stated otherwise.

If we use �x obtained as in Equation (3), then from Equa-
tion (2) we estimate the TTL tx as:

tx = �

BUDx(K)

K
log(1� �x) (4)

We use Equation (4) to calculate the TTL in our experiments
presented in Section 4.

If we assume a uniform interval between two consecutive
updates, we can simplify Equation (4) further by ignoring
BUDx(1). When �x denotes the uniform interval between
two consecutive updates of a data item x, tx is simply cac-
ulated as follows since BUDx(K)�BUDx(1)

K�1 = �x, which is
independent of K.

tx = ��x log(1� �x) (5)

In fact, as K increases, so does the value of Equation (4)
asymptotically approaching the value of Equation (5).

4 Experiments

In this section we demonstrate the effectiveness and the
practicality of our TTL estimation method through an ex-
periment using the logs generated by a real cache server.
For this purpose, we first describe the criterion for assess-
ing our method and the model of the experiments, and then,
present the result.

4.1 Assessment criterion

As the metric for judging the effectiveness our TTL esti-
mation method, we use the ratio of the number of the falseT-
TLs (denoted by #falseTTLs) that occur to the total number
of the estimated TTLs (denoted by #TTLs). We call this
ratio the false estimation ratio.

false estimation ratio =
#falseTTLs

#TTLs
(6)

In other words, the false estimation ratio is a measure of
how often the estimated TTL violates the assumption of
cache validity before it expires. Its probabilistic expected
value is equivalent to the update risk. Therefore, if the false
estimation ratio experimentally obtained and the update risk
used to estimate the TTL are close enough, it proves our
method effective.

4.2 Experiment model

Figure 7 shows the configuration of the simulation pro-
gram used in the experiment. We use two kinds of log files
(access.log and store.log) downloaded from the IRCache
project site [16]. The log files have the data format used
by the Squid proxy cache [19]. The access.log file contains
information about the reference requests; the store.log file
contains information about cache entrances, removals, and
updates of the cached data items.

access.log

store.log

Data
Extractor

Reference
point list

Simulator
Results

(RTU lists)
Update

point list

access.log

store.log

Data
Extractor

Reference
point list

Simulator
Results

(RTU lists)
Update

point list

Figure 7. Simulation program configuration.

The data extractor extracts data from the two log files
for the simulator to use. From the access.log file, the data
extractor extracts the URLs and the reference (time) points
of the accessed data items, and then writes them into the
reference point list file. From the store.log file, it extracts
the URLs and the update (time) points of the data items
whose access records exist in the access.log, and then writes
them into the update point list file. The update points are
retrieved from the Last-Modified field in the updated data
items. When using backward K-update distance, we ex-
clude data items with no more than K update records be-
cause (K+1) update (time) points are required to calculate
a backward K-update distance. As a result, we generate
the reference points and update points of about 10,000 data
items. Provided with the reference point list file and the up-
date point list file, the simulator checks, for each URL in
the two list files, whether an update of the data item iden-
tified by the URL occurs within the TTL estimated using
Equation (4). Then, it calculates the false estimation ratio
as shown in Equation (6) and writes the resulting false esti-
mation ratio information into a file.

Figure 8 shows the TTL estimation points (test), the ex-
piration points (texp), and the next update points (tu) of
a data item as they appear in the cache log. The simula-
tor estimates the next TTL at the first reference point after
the expiration of the previous TTL because this is when the
cache server assigns a new TTL based on the result of re-
validating the cached data item. In case the previous TTL

does not exist, it uses the first reference point as the caching
point and assigns a new TTL at that point.

tu= update point of x
test = TTL estimation point (= the 1st reference point after the previous texp)
texp= TTL expiration point (= test + estimated TTL)

tu tutesttexp

Estimated TTL Estimated TTL

testtu

Estimated TTL

texp texp

tu= update point of x
test = TTL estimation point (= the 1st reference point after the previous texp)
texp= TTL expiration point (= test + estimated TTL)

tu tutesttexp

Estimated TTL Estimated TTL

testtu

Estimated TTL

texp texp

Figure 8. TTL estimation points, TTL expira-
tion points, and the next update points based
on a cache log.

4.3 Experiment result

Figure 9 compares the average false estimation ratio
measured and the average update risk specified by the user
of the 10,000 data items extracted from the two log files.
We use 1, 2, 3, and 4 as the value of K and do not consider
any higher values. The reason for this is that, as shown in
Equation (5), the TTL tx shows a tendency of becoming in-
dependent of K as K increases as long as it does not break
the temporal locality of update occurrences.

In Figure 9, we see that the average false estimation ratio
increases almost linearly with the update risk. The slope is
close enough to 1 proving the quality of our TTL estimation
method.

���

���

���

���

���

���

���

��	

��

���

���

��� ��� ��� ��� ��� ��� ��	 ��
 ���

���������	
�

�
�
�
�
�
�
�
�
�
�
�
	
�
�
�

�
�
�
�
�
�

��

��

��

��

Figure 9. False estimation ratio vs. update
risk.

Figure 10 is a plot of the similarity between the false
estimation ratio and the update risk, where the similarity is
defined as:

similarity =
false estimation ratio

update risk
(7)

The figure shows that the similarity ranges between 0.8 and
1.2 for K ranging between 1 and 4. It is closest to 1 when
K = 2, suggesting that 2 is the optimum value of K. This
result is consistent with the observation made in the refer-
ence [17].

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��	 ��� ��
 ��� ���

���������	
�

��
��

��
��

��
	 ��

��

��

��

Figure 10. The similarity values for K =1,2,3,
and 4.

5 Impact of update risk on consistency and
performance of cache

In this section, to provide a help for finding the com-
promising point between consistency and performance of
cache, we empirically show the impact of update risk on
consistency and performance of cache.

In the same experiment as described in Section 4, we add
an assumption that the cache server can store all the refer-
enced data in order to show only the impact of update risk
excluding other factors such as the replacement algorithm.
Then, we add new measures: the consistency ratio and the
hit ratio. We define the consistency ratio as the ratio of the
number of valid references to the total number of references.
A valid reference is defined as a reference to the data syn-
chronized with the original data(we note that the reference
occurring within a TTL may not be a valid reference.). The
hit ratio is the ratio of the number of references to the data
in cache to the total number of references(we note that the
number of references in cache includes invalid references).

consistency ratio =
number of valid references

total number of the references

hit ratio =
number of references to data in cache

total number of the references
As shown in Figure 11, we see the consistency ratio

and the hit ratio have a trade-off relationship. Therefore,
the cache server administrator need to find a compromising
point according to network congestion. When the network
is congested heavily, we may enlarge update risk in order to
increase the hit ratio and to reduce congestion and response

time sacrificing the consistency ratio. On the other hand,
when the network is not congested, we may reduce update
risk to increase the consistency ratio within the tolerable
bounds of response time.

����

����

����

����

����

����

����

��	�

��
�

����

����

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

��������	
�

�
�
�
�
��
��
�
�
�
	

�
���

	�
�
	
�
��
	

�
��
�

�����������	
����

���	
����

Figure 11. The consistency ratio and the hit
ratio as update risk changes.

As shown in Figure 11, when update risk is 0 (TTL is set
to 0), the consistency ratio is 1 and the hit ratio is 0 since
nothing can be cached. On the other hand, when the update
risk is 1 (TTL is set to an infinite value), the hit ratio does
not grow to 1 since the first references of each data cannot
be read from cache; the consistency ratio does not degrade
to 0 since references occurring between the point of caching
and the point of update is valid.

6 Comparison with Conventional Methods

In this section, we compare our method with the two con-
ventional methods—the fixed TTL method and the heuris-
tic method—described in Section 2.3 in terms of the update
risk.

The fixed TTL method assigns the same TTL to all data
items regardless of their update patterns. Putting it in terms
of the update risk, the TTL is not influenced by the update
risk at all, as shown in Figure 12. As a result, each cached
data item is subject to a different update risk, which renders
the risk so unpredictable as to impair the validity of cached
data as a whole.

The heuristic method takes a certain proportion (M) of
the backward 1-update distance (i.e., Now� Last-Modified)
as the value of TTL. Figure 13 shows how TTL changes
with respect to the value of M . Since the backward 1-
update distance is a known constant at the point of caching,
TTL is a linear function of M , with the the backward 1-
update distance given as the slope.

By now we know that the TTL is a function of the update
risk in our method, and is a function of M in the heuristic
method. Thus, once we know the relationship between the
update risk andM , we can deduce the relationship between
the two TTL estimation methods. Theorem 2 serves the
purpose.

1

time

Update
risk

ρx

Now + fixed TTL

ρz

ρy

Now

1

time

Update
risk

ρx

Now + fixed TTL

ρz

ρy

Now

Figure 12. Update risk � vs. TTL in the fixed
TTL method.

M

TTL

TTL = (Now- Last-Modified) × M

M

TTL

TTL = (Now- Last-Modified) × M

Figure 13. TTL as a linear function ofM in the
heuritsitc method.

Theorem 2: If in the update-risk based method we use
the backward 1-update distance, which is the distance used
in the heuristic method, then the heuristic method with the
proportion constantM is equivalent to the update-risk based
method with an update risk of 1� e�M .

PROOF: From Equation (3), the update frequency �x of a
data item x in the update-risk based TTL estimation method
using the backward 1-update distance is estimated as:

�x =
1

BUDx(1)
(8)

=
1

Now� Last-Modified(x)
(9)

where Last-Modified(x) denotes the last update point of x
in reference to the current caching point Now. Then, from
Equation (9), the TTL tx of the heuristic method is obtained
as:

tx = (Now� Last-Modified(x)) �M (10)

=
1

�x
�M (11)

Hence, M = �x � tx. By substituting M into �xtx in
Equation (1), we obtain the update risk �x as:

�x = 1� e�M (12)

�

7 Conclusions

We have presented a new method for estimating the TTL
under the weak cache consistency requirement of client-side
cache servers such as the transparent cache server and the
proxy cache server. Our method is based on the notion of
update risk, defined as the probability of the original data
item being updated during the TTL. The TTL of a cached
data item is estimated given the maximum allowed update
risk of the data item. For this purpose, we have developed a
formal method under the assumption that the process of up-
date occurrences is modeled as a Poisson process. The Pois-
son constant, which is interpreted as the average frequency
of update occurrences, can be estimated as the inverse of
the average interval between two consecutive updates for
the past K update occurrences, where K is recommended
to be within the temporal locality zone of updates.

To verify the effectiveness and practicality of our
method, we have performed experiments using real web
cache log files. We have compared the update risk and false
estimation ratio with the result of obtaining a close match
between the two—confirming the merit of our method. We
have also shown the impact of update risk on the consis-
tency ratio and the hit ratio, which can be used to help the
administrator determine an appropriate value of update risk.

We then have discussed how the two conventional TTL
methods compare in the framework of our method. The
fixed TTL method assigns the same TTL without regard
to the actual update risk of each data item. The heuristic
method is a special case of our method in which the update
risk is equal to 1�e�M , whereM is an arbitrary proportion
of the distance between the caching point and the immedi-
ately previous update point.

We are currently investigating the feasibility of apply-
ing the proposed method to dynamic web data generated on
demand. Recently, cache products for dynamic web data
such as dynamai, Xcache, and spider cache have been com-
mercialized [3]. Caching techniques for dynamic data are
more complicated since dynamicity of data makes it diffi-
cult to detect updates on web data. I think, however, TTL
estimation for dynamic web data will be more important
since none of dynamic data has TTL and therefore the cache
server must always estimate it.

Compared with the two conventional methods—the fixed
TTL method and the heuristic method—our method proves
to generate the TTL that reflects the reality of cache ac-
cesses better. Besides, our method gives the TTL a mean-
ing that is well defined and intuitively comprehensible. In
summary, we believe that our method provides a clear un-
derstanding and a formal basis for the TTL–based approach
to maintaining web cache consistency.

References

[1] Arlitt, M. F. and Willaiamson, C. L., “Web Server
Workload Characterization: The Search for Invari-
ants,” In Proc. Int’ l Conf. on Measurement and
Modeling of Computer Systems, ACM SIGMETRICS,
Philadelphia, pp. 126–136, May 1996.

[2] Barish, G. and Obraczka, K., “World Wide Web
Caching: Trends and Techniques,” IEEE Communi-
cations, Vol. 38, No. 5, pp. 178–184, May 2000.

[3] Internet Caching Resource Center, http://www.
caching.com/hitsandmisses/, 2001.

[4] Chankhunthod, A., Danzig, P. B., and Neerdaels, C.,
“A Hierarchical Internet Object Cache,” In Proc.
USENIX Technical Conf., USENIX Association, San
Diego, Calif., pp. 153–164, Jan. 1996.

[5] Cho, J., and Garcia-Molina, H., “Synchronizing a
database to Improve Freshness,” In Proc. Int’ l Conf.
on Management of Data, ACM SIGMOD, Dallas, pp.
117–128, May 2000.

[6] Colajanni, M. and Yu, P. S., “Adaptive TTL Schemes
for Load Balancing of Distributed Web Servers,”
In Performance Evaluation Review, ACM SIGMET-
RICS, Vol. 25, No. 2, pp. 36–42, Sept. 1997.

[7] Gwertzman, J. and Seltzer, M., “World-Wide Web
Cache Consistency,” In Proc. USENIX Technical
Conf., USENIX Association, San Diego, Calif., pp.
141-152, Jan. 1996.

[8] Fielding, R., Gettys, J., Mogul, J. C.,
Frystyk, H., and Berners-Lee, T., Hyper-
text Transfer Protocol – HTTP/1.1. RFC 2616,
http://nic.ddn.mil/ftp/rfc/rfc2616.txt, June 1999.

[9] Internet Information Services 5.0 Technical Overview,
http://www.microsoft.com/windows2000/docs/, 2001.

[10] Inktomi Essential, http://www.inktomi.com, 2001.

[11] The Leading Edge Web Caching Software, http://
www.imimic.com, 2001.

[12] Novell Internet Cacing System, http://www.novell.
com/products/ics, 2001.

[13] The Content Smart Company, http://www.cacheflow.
com, 2001.

[14] Enabling Rich Media Applications with Award Win-
ning Infrastructure, http://www.info-libria.com, 2001.

[15] Liu, C., and Cao, P., “Maintaining Strong Cache Con-
sistency in the World-Wide-Web,” IEEE Trans. on
Computers, Vol. 47, No. 4, pp. 445–457, Apr. 1998.

[16] IRCache Home, http://www.ircache.net/, 2001.

[17] O’Neil, E. J., O’Neil, P. E., and Weikum, G., “The
LRU-K Page Replacement Algorithm For Database
Disk Buffering,” In Proc. Int’ l Conf. on Management
of Data, ACM SIGMOD, Washington, D.C., pp. 297–
306, May 1993.

[18] Shim, J., Scheuermann, P., and Vingralek, R., “Proxy
Cache Design: Algorithms, Implementation and Per-
formance,” IEEE Trans. on Knowledge and Data
Engineering, Vol. 11, No. 4, pp. 549–562, July/Aug.
1999.

[19] Pearson, O., Squid: A User’s Guide, http://www.
squid-cache.org, 2001.

[20] Williams, B., “Transparent Web caching solutions,” In
Proc. Int’ l Workshop on WWW Caching, Manchester,
England, June 1998.

