
Efficient Evaluation of Partial Match Queries for XML
Documents Using Information Retrieval Techniques

Young-Ho Park1, Kyu-Young Whang1, Byung Suk Lee2, and Wook-Shin Han31 Department of Computer Science and
Advanced Information Technology Research Center (AITrc)??

Korea Advanced Institute of Science and Technology (KAIST), Koreafyhpark, kywhangg@mozart.kaist.ac.kr2 Department of Computer Science
University of Vermont Burlington, VT, USA

bslee@cs.uvm.edu3 Department of Computer Engineering
Kyungpook National University, Korea

wshan@knu.ac.kr

Abstract. We propose XIR, a novel method for processing partial match queries
on heterogeneous XML documents using information retrieval (IR) techniques.
A partial match query is defined as the one having the descendent-or-self axis
“//” in its path expression. In its general form, a partial match query has branch
predicates forming branching paths. The objective of XIR isto efficiently sup-
port this type of queries for large-scale documents of heterogeneous schemas.
XIR has its basis on the conventional schema-level methods using relational ta-
bles and significantly improves their efficiency using two techniques: an inverted
index technique and a novel prefix match join. The former indexes the labels in
label paths as keywords in texts, and allows for finding the label paths matching
the queries more efficiently than string match used in the conventional methods.
The latter supports branching path expressions, and allowsfor finding the result
nodes more efficiently than containment joins used in the conventional methods.
We compare the efficiency of XIR with those of XRel and XParentusing XML
documents crawled from the Internet. The results show that XIR is more effi-
cient than both XRel and XParent by several orders of magnitude for linear path
expressions, and by several factors for branching path expressions.

1 Introduction
Recently, there have been significant research on processing queries against XML docu-
ments [30]. To our knowledge, however, most of them considered only a limited number
of documents with a fixed schema, and thus, are not suitable for large-scale applica-
tions dealing with heterogeneous schemas–such as an Internet search engine [20] [29].
A novel method is needed for these applications, and we address it in this paper.

Partial match queries in XPath [7] can be particularly useful for searching XML
documents when their schemas are heterogeneous while only partial schema informa-
tion is known to the user. Here, a partial match query is defined as the one having the?? This work was supported by the Korea Science and EngineeringFoundation (KOSEF) through

the Advanced Information Technology Research Center (AITrc).

2 Young-Ho Park et al.

descendent-or-self axis “//” in its path expression. A fullmatch query [18] can be con-
sidered a special case of a partial match query.

Partial match queries can be classified intolinear path expressions (LPEs)and
branching path expressions (BPEs). An LPE is defined as a path expression consist-
ing of a sequence of labels having a parent-child relationship or an ancestor-descendent
relationship between labels; a BPE is defined as a path expression having branching
conditions for one or more labels in the LPE.

Existing methods for providing partial match queries can beclassified into two
types: schema-level methods [24] [14] [15] [8] and instance-level methods [17] [26]
[4] [6] [16] [5] [9] [10] [12]. The ones of the first type are usable for both partial match
queries and BPEs, but they are not designed for use in large-scale documents of hetero-
geneous schemas [24] [14] [15] or have only limited support for partial match queries
and do not explicitly handle BPEs [8]. The ones of the second type can support both,
but can not be best used in a large-scale database because of inefficiency. Between these
two classes of methods, the schema level methods are much more feasible than the in-
stance level methods for large-scale XML documents becauseof their abilities to “filter
out” document instances at the schema level. We thus adopt the schema-level methods
as the basis of our method.

We particularly base our method on the schema-level methodsusingrelational ta-
bles, such as XRel [24] and XParent [14] [15]. There are two reasons for this. First,
those methods can utilize well-established techniques on relational DBMSs instead of a
few native XML storages. Second, those methods can also utilize SQLs to query XML
documents. For the query processing, they store the schema information and instance
information of XML documents in relational tables, and process partial match queries
in two phases: first, find the XML documents whose schemas match a query’s path ex-
pression, and second, among the documents, find those that satisfy selection conditions
(if there are any) specified on the path expression.

However, query processing efficiencies of the two existing methods, XRel and XPar-
ent, are too limited for large-scale applications, as we will show in our experiments in
Section 6. The hurdle in the first phase is the large amount of schema information, and
the hurdle in the second phase is the large number of documentinstances.

The objective of our method (we name itXIR) is to improve the efficiencies in both
phases. Specifically, for the first phase, we present a methodthat adopts theinverted in-
dex[22] technique, used traditionally in the Information retrieval (IR) field, for search-
ing a very large amount of schema information. IR techniqueshave been successfully
used for searching large-scale documents with only a few keywords (constituting partial
schema information). If we treat the schema of an XML document as a text document
and convert partial match queries to keyword-based text search queries, we can effec-
tively search against heterogeneous XML documents using partial match queries. For
the second phase, we present a novel method called,prefix match join, for searching a
large amount of instance information.

In this paper, we first describe the relational table structures for storing the XML
document schema and instance information, and then, describe the structure of the in-
verted index. We then present the algorithms for processingqueries. We also present
the prefix match join operator, which plays an essential rolein the evaluation of BPEs,
and present an algorithm for finding the nodes matching the BPE. Then, we discuss
the performance of XIR in comparison with that of XRel and XParent, and verify our
comparison through experiments using real XML document sets collected by crawlers
from the Internet. The results show that XIR outperforms both XRel and XParent by
several orders of magnitude for LPEs and by several factors for BPEs.

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 3

This paper makes the following novel contributions toward large-scale query pro-
cessing on heterogeneous XML documents:� In XIR, we apply the IR technology to the schema-level information rather than to

the instance-level information of the XML documents. In a large-scale heteroge-
neous environment, schema-level information as well as instance-level information
would be extremely large. By applying the IR technique to theschema-level infor-
mation, we can improve performance significantly by achieving schema-level fil-
tering. i.e., restricting the instances to be searched to those whose schema matches
the query’s path expression.� XIR also presents a novel instance-level join called the prefix match join for effi-
ciently processing queries involving BPEs. The prefix matchjoin improves perfor-
mance significantly by minimizing the number of joins for finding instance nodes
satisfying branching predicates.

2 Preliminaries
2.1 XML document model

Our XML document model is based on the one proposed by Bruno etal. [6]. In this
model, an XML document is represented as a rooted, ordered, labeled tree. Anodein
the tree represents an element, an attribute, or a value; anedgein the tree represents
an element-subelement relationship, element-attribute relationship, element-value rela-
tionship, or attribute-value relationship. Element and attribute nodes collectively define
the document structure, and we assign labels (i.e., names) and unique identifiers to
them. Figure 1 shows an example XML tree of a document. In thisfigure, all leaf nodes
except those numbered 15 and 27 (representing the two attribute values “R” and “T”)
represent values and all non-leaf nodes except those numbered 14 and 26 (representing
the attribute@category) represent elements. Note that attributes are distinguished
from elements using a prefix ‘@’ in the labels.

issue

articles

1

2

3

4

5

7

8

9

10

11

17

editoreditor

lastfirst lastfirst

``Michael’’ ``Franklin’’ ``Jane’’ ``Poe’’

6

author

lastfirst

``David’’ ``Curry’’

@category keywordtitle

``XML’’``XML schema’’

article

18

19

20

21

22

23

12

13

14

15

16 28
author

lastfirst

``John’’ ``Smith’’

@category keywordtitle

``DB’’``OODB’’

article

29

30

31

32

33

34

25

24

26

27

``R’’ ``T’’

35

36

Fig. 1. An example XML tree of a document.

We modify this model so that a node represents either an element or an attribute but
not a value. We also extend the model with the notions of labelpaths and node paths as
defined below.
Definition 1. A label path in an XML tree is defined as a sequence of node labelsl1; l2; :::; lp (p � 1) from the root to a nodep in the tree, and is denoted asl1:l2: � � � :lp.

4 Young-Ho Park et al.

Definition 2. A node pathin an XML tree is defined as a sequence of node identi-
fiers n1; n2; :::; np (p � 1) from the root to a nodep in the tree, and is denoted asn1:n2: � � � :np.

Label paths represent XML document structures and are said to beschema-levelinfor-
mation. In contrast, node paths represent XML document instances and are said to be
instance-levelinformation. We say a label pathmatchesa path expression, a node path
belongs toa label path, and a node pathis obtained froma path expression. For exam-
ple, in Figure 1,issue.editor.first is a label path matching a path expression
//editor//first, and 1.2.3, 1.7.8 are node paths belonging to the label path.Note
that there may be more than one node path belonging to the samelabel path because
there may be more than one instance with the same structure.

2.2 XML query model

Our query language belongs to the tree pattern query (TPQ) class [2]. The query lan-
guage supports two kinds of path expressions: 1) linear pathexpressions (LPEs) and 2)
branching path expressions (BPEs).

An LPE is expressed as a sequence of labels connected with ‘/’or ‘//’ as in Defini-
tion 3.

Definition 3. A linear path expressionis defined asl0o1l1o2l2 � � � onln, whereli (i =0; 1; � � � ; n) is thei-th label in the path, andoj (j = 1; 2; � � � ; n) is either ‘/’ or ‘//’ which,
respectively, denotes a parent-child relationship or an ancestor-descendant relationship
betweenlj�1 andlj . Here,l0 is the root of the XML tree denoting the set of all XML
documents (i.e.,document("*")) and may be omitted.

A BPE is expressed as an LPE augmented with ‘branch predicateexpressions’ [Ci]
for some labelsli (i 2 f1; 2; � � � ; ng) [7] as in Definition 5. As in some work in the
literature [1] [21], for simplicity, we consider only simple selection predicates4 for the
branch predicate expressions as in Definition 4.

Definition 4. A branch predicate expressionCk is defined as an expressionL orL� v,
whereL is a linear path subexpressionok1lk1ok2lk2 � � � okplkp (p � 1), v is a constant
value, and� is a comparison operator (� 2 f=; 6=; >;�; <;�g). L specifies the ex-
istence of a node pathn1:n2: � � � :np that belongs to the label path matching the LPEl0o1l1o2 � � � oklkok1lk1ok2lk2 � � � okplkp, andL� v further specifies the node path to sat-
isfy the selection condition onnp.

Definition 5. A branching path expressionis defined asl0o1l1[C1℄o2l2[C2℄ � � � onln[Cn℄
where (1)l0o1l1o2l2 � � � onln is an LPE defined in Definition 3 and (2)Ck (k = 1; 2; � � � ;-n) is abranch predicate expressionas defined in Definition 4, where some (not all) of
them may be omitted.

The following query is an example BPE for retrieving thetitle elements that are
children of thearticle elements that contain at least onekeyword element and that
are descendants of anissue element having a descendantauthor element whose
child last element has the value"Curry".

Q1: :/issue[//author/last="Curry"]//article[/keyword]/-
title

4 This can be easily extended to consider compound (e.g., conjunctive) predicates as supported
in other work in the literature [4] [6]. However, we omit thisissue since it is not the focus of
this paper.

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 5

Note that this BPE on the elementissue has a selection condition on the labellast in
the LPE//issue//author/last and an existential condition on the labelkey-
word in the LPE//issue//article/keyword.

2.3 XML query patterns

In this paper, we model a path expression as aquery patterndefined in Definition 6. We
modify the definition of the twig pattern originally used in the Holistic Twig Join [6] to
formally represent the notions that we use in this paper. Thedefinition is based on the
BPE, as defined in Definition 5.

Definition 6. Given a path expressiono1l1[C1℄o2l2[C2℄ � � � onln[Cn℄ defined in Defini-
tion 5 (with l0 omitted), we represent it as aquery patternthat consists of a binary tree
and a dangling edge connected to its root and that has the following properties:� An edge representsoj (j 2 f1; 2; � � � ; ng) in the path expression. The edge is shown

as a single line ifoj is ‘/’ and as a double line ifoj is ‘//’. The dangling edge
representso1.� A node represents a labellk (k 2 f1; 2; � � � ; ng) in the path expression. The root
node represents the labell1.� The left child of a node representinglk (k 2 f1; 2; � � � ; n� 1g) representslk+1.� The right subtree of a node representinglk (k 2 f1; 2; � � � ; ng) is the query pattern
representing the branching predicate expressionCk � ok1lk1ok2lk2 � � � okplkp (p �1).� If the label represented by a node has a selection condition (“� v”) on it, then the
node is earmarked with “� v”.

The twig pattern [6] does not distinguish between the subtree whose root is also the
root of the XML tree and the one whose root is not, if both matchthe same pattern.
In contrast, the query pattern does distinguish between them by showing the dangling
edge using a single line in the former case and a double line inthe latter case.

Related to the query pattern, we use the following terms in this paper.� One of the nodes in a query pattern is retrieved as the query result. This node
corresponds to the labelln in the LPE defined in Definition 3 or the BPE defined
in Definition 5. We call this node theresult nodeand distinguish it from the other
nodes by shading it gray.� Some of the nodes in a query pattern have a right subtree. We call such a node a
branching node. Any node corresponding to a labellk followed by[Ck ℄ as inlk[Ck℄
shown in Definition 5 is a branching node.

Figure 2 shows the query pattern of the query Q1 in Section 2.2. The nodetitle
is the result node, and the nodesissue andarticle are branching nodes.

As a special case of the query pattern, we define thelinear query patternas follows.

Definition 7. The query pattern of a linear path expression is called thelinear query
pattern. Compared with the query pattern defined in Definition 6, a linear query pattern
has no branching node.

In this paper, we use the termsroot label, leaf label, result label, andbranching
label in a path expression interchangeably with theroot node, leaf node, result node,
andbranching nodein a query pattern. For example, in Figure 2,issue is the root
label of the query Q1;title, keyword, andlast are leaf labels;title is the
result label; andissue andarticle are branching labels.

6 Young-Ho Park et al.

issue

author

keywordtitle

article

last

= ``Curry’’

Fig. 2. Query pattern of the query Q1.

3 Related Work
As mentioned in Introduction, there are two kinds of methodsfor evaluating path ex-
pressions: schema-level methods and instance-level methods. A schema-level method
uses structural information like the label paths to find nodes matching a path expres-
sion [14] [15] [24] [8], whereas an instance-level method uses only node identification
information like the start and end positions of a node [4] [6][16]. In this section, we
briefly discuss instance-level methods, and then, focus on schema-level methods.

3.1 Instance-level methods
There have been three different approaches for the instance-level method. The first uses
XML tree navigation [3] [13] [19]. It converts a path expression to a “state machine”5,
and then evaluates the path expression by navigating the XMLtree guided by the state
machine. The second uses node instance information stored for each node in an XML
tree [4] [6] [16] [17] [23] [26]. It converts a path expression to a (structural) join query,
and then evaluates the join query using the node instance information. The query eval-
uation in this approach, however, involves comparing the node instance information,
and therefore, tends to be more expensive than in the schema-level methods, which can
filter out node instances significantly by using the schema information. The third uses
information retrieval (IR) technique, particularly an inverted index created on XML
documents [5] [9] [10] [12]. Although using inverted indexes, however, they are funda-
mentally different from XIR, which creates an inverted index on thelabel paths, which
are schema-level information.

3.2 Schema-level methods
Schema-level methods are categorized into those using special purpose indexes [8] [11]
and those using relational tables [24] [14] [15] depending on where and how label paths
are stored. In the former case, label paths are stored dynamically as they are used in the
queries. In the latter case, all label paths in the documentsare stored in the tables of a
relational DBMS a priori.

Index Fabric [8] is considered the representative method inthe schema-level meth-
ods using special purpose indexes. Index Fabric uses the Patricia trie to index the label
paths and values that have occurred in the queries occurringfrequently. However, In-
dex Fabric is not meant to support partial match queries. Furthermore, the method is
not designed to support BPEs, which are very effective for searching in a heteroge-
neous environment. These are critical drawbacks that render the method inapplicable in
a large-scale, heterogeneous environment. Thus, in this section, we primarily focus on
the schema-level methods using relational tables.

5 A representation of the sequence of labels in the path expression as a sequence of states in
finite state automata.

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 7

XRel [24] and XParent [14] [15], which are the two representative ones among the
schema-level methods using relational tables, provide a basis for our XIR method. We
describe each method in this subsection. We use the termnodeinterchangeably with
elementor attributeas these are represented as nodes in the XML document model and
the query pattern.

XRel In XRel, the XML tree structure information is stored in the following four
tables [24]:

Path(label path id, label path)
Element(document id, label path id, start position, end p-
osition, sibling order)
Text(document id, label path id, start position, end posi-
tion, value)
Attribute(document id, label path id, start position, en-
d position, value)

XRel uses two techniques for evaluating LPEs and BPEs:string matchandcontain-
ment join. The former belongs to the schema-level method and is used tohandle LPEs;
the latter belongs to the instance-level method and is used to handle BPEs.

In the case of an LPE, XRel first finds the label paths matching the query’s path
expression from thePath table. The matching is done using the SQL string match op-
eratorLIKE. All label paths in thePath table must be scanned in this case because
an index like the B+-tree cannot be used to search for a partially matching label path.
Then, XRel joins the set of matching label paths with the tableElement via the col-
umnlabel path id to obtain the result nodes.

For the case of a BPE, we use the query pattern defined in Section 2.3. XRel first
decomposes a BPE into multiple LPEs consisting of one LPE from the root to each
branching node and one LPE from the root to each leaf node. Forexample, a BPE=l1[=l2=l3 = v2℄=l4 is decomposed into three LPEs=l1, =l1=l2=l3, and=l1=l4. Then,
for each LPE, XRel finds the set of nodes (we call it anode set) obtained from the LPE
in the same manner described above and reduces the set to those satisfying a selection
condition (e.g.,=l1=l2=l3 = v2). Then, it compares the node set obtained from an LPE
ending at a branching node (e.g.,=l1) with the node set obtained from the LPEs ending
at the leaf nodes (e.g.,=l1=l2=l3, =l1=l4) and, among the nodes obtained from the latter
LPEs, retains only those that are descendants of the nodes inthe former node set. This
is done using thecontainment joinwhich is implemented as a�-join comparing the start
positions and end positions of nodes.

XParent XParent [14] [15] is similar to XRel, but uses a different table schema so that
it can implement the containment join operator using equi-joins instead of�-joins. The
schema is as follows [14].

LabelPath(label path id, length, label path)
Element(document id, label path id, node id, sibling order)
Data(document id, label path id, node id, sibling order,
value)
Ancestor(node id, ancestor node id, offset to ancestor)
DataPath(parent node id, child node id)

In query processing, XParent evaluates an LPE in the same wayas XRel. In the case
of a BPE, however, XParent generates a smaller number of LPEsthan XRel because it
generates only those from the root to each leaf node of a querypattern. Then, after

8 Young-Ho Park et al.

retrieving the node set in the same manner as in XRel, the nodeset obtained from the
LPE containing the result node is reduced through joins withthose obtained from the
other LPEs. Here, the join is performed as an equi-join through the tableAncestor,
thereby finding the node idenfitier of the common ancestor.

4 XIR Storage Structures

In this section, we present the storage structures used in our XIR method. XIR stores in-
formation needed for query processing at two levels – the schema level and the instance
level. The schema-level information consists of the label paths occurring in the XML
tree and the inverted index on these label paths; the instance-level information consists
of all the node paths in the XML tree.

XIR uses two tables and an inverted index to store information about XML docu-
ment structure:

LabelPath(pid, label path)
NodePath(pid, docid, nodepath, value)
Inverted index on label path of the table LabelPath.

4.1 Schema-level information
The tableLabelPath represents theschema-level informationand stores all the dis-
tinct label paths occurring in XML documents and their path identifiers (pids). Figure 3
shows theLabelPath table and the inverted index for the example XML tree in Fig-
ure 1. The labels prefixed with ‘$’ and ‘&’ are added to denote the first label and the
last label of each label path. The first label is to match the root label of the document,
and the last label is to match the leaf label of a path expression.

�����������������	
�������	
�����
��������
��������������������	
�������	
���������
�����
��������������������	
�������	
��������������������������������������	
�������	
���������������������������������	
�������	
�����
������
������������������	
�������	
���	����������	������������������������	
�������	
�������	
������������������	
��������	
����������������������
�����
��� ���������
������� !"
#$%���&'

�����������������	
�������	
�����
��������
��������������������	
�������	
���������
�����
��������������������	
�������	
��������������������������������������	
�������	
���������������������������������	
�������	
�����
������
������������������	
�������	
���	����������	������������������������	
�������	
�������	
������������������	
��������	
����������������������
�����
��� ���������
������� !"
#$%���&'

(�) *����+��� �����,
������ - .�/ �/ 0�1/ %2 .�/ �/ 0 �1/ $2 .%/ �/ 0�1/ #2 3����� - .�/ �/ 0�1/ %2 .�/ �/ 0�1/ $2 .%/ �/ 0�1/ #2 3������ - .�/ �/ 0%1/ %2����	
� - ."/ �/ 0$1/ #2 .!/ �/ 0$1/ "2 . / �/ 0$1/ "2 3�����	
� - ."/ �/ 0#1/ #2����	
�� - .#/ �/ 0%1/ $2 ."/ �/ 0%1/ #2 .!/ �/ 0%1/ "2 3�����	
�� - .#/ �/ 0$1/ $2������ - .�/ �/ 0%1/ $2 .%/ �/ 0%1/ #2 .$/ �/ 0%1/ #2������� - .�/ �/ 0$1/ $2������ - .�/ �/ 0#1/ "2 .��/ �/ 0#1/ !2 .��/ �/ 0#1/ !2������� - .�/ �/ 0"1/ "2����� - .%/ �/ 0$1/ #2 .��/ �/ 0"1/ !2������ - .��/ �/ 0!1/ !2
��� - .$/ �/ 0$1/ #2 .��/ �/ 0"1/ !2�
��� - .��/ �/ 0!1/ !2���
� - . / �/ 0#1/ "2����
� - . / �/ 0"1/ "2���
��� - .��/ �/ 0#1/ "2����
��� - .��/ �/ 0"1/ "2�	������� - .!/ �/ 0#1/ "2��	������� - .!/ �/ 0"1/ "2(�) *����+��� 456�7��' 45'�8,
9�:;<7' �<=�&5> �&=�

Fig. 3. An example LabelPath table and inverted index.

TheLabelPath inverted index is created on thelabelpath field in theLa-
belPath table. Here, we consider label paths as text documents and labels in these
label paths as keywords. Like the traditional inverted index [22], theLabelPath in-
verted index is made of the pairs of a keyword (i.e., a label) and a posting list. Each post-
ing in a posting list has the following fields:pid, occurrence count, offsets,
label path length, wherepid is the identifier of the label path in which the label
occurs,occurrence count is the number of occurrences of the label within the la-
bel path,offsets is the set of the positions of the label from the beginning of the label

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 9

path, andlabel path length is the number of labels in the label path. For instance,
in the posting of the labelsection in a label path$chapter.chapter.sectio-
n.section.section.paragraph.¶graph, theoccurrence count of
section is 3, theoffsets of section isf 3, 4, 5g, and thelabel path length
is 7.

4.2 Instance-level information

The tableNodePath represents theinstance-level informationand stores the node
paths to uniquely identify all the nodes in the XML documents. Figure 4 shows an
example of theNodePath table for the XML tree in Figure 1.

TheNodePath table stores all the node paths in the columnnodepath. If the
leaf node of a node path has a value, then the value is stored inthe columnvalue. The
columnpid stores label path identifiers, and is used for join with theLabelPath
table to find all the node paths belonging to the same label path. The columndocid
stores the XML document identifiers.

������������
���	
��

����
�

���������������
��������� ���������� � ��������� ������
��������������� ������	��	�������	���
��������������	���������������
�� !�""#� $�%&'� �����
$(� ����� ���)*+�,�� -� ����� .���/�&�� �&*+���� ����� 0�12���3
�

������������
���	
��

����
�

���������������
��������� ���������� � ��������� ������
��������������� ������	��	�������	���
��������������	���������������
�� !�""#� $�%&'� �����
$(� ����� ���)*+�,�� -� ����� .���/�&�� �&*+���� ����� 0�12���3
�

Fig. 4. An example NodePath table.

5 XIR Query Processing Algorithms

In this section we present the algorithms for evaluating LPEs and BPEs based on the
XIR storage structures described in the previous section, and analytically compare
XRel, XParent, and XIR with a focus on their performance-related features.

5.1 LPE evaluation algorithm

Figure 5 shows the algorithm for evaluating an LPE. In this algorithm, XIR first finds
matching label paths in theLabelPath table using theLabelPath inverted index,
and then, performs an equi-join between the set of the label paths found and theNode-
Path table via the columnpid. It then returns the matching node paths as the query
result.

Formally, an LPE is evaluated as�nodepath(�MATCH (labelpath;LPE)LabelPath onpid=pid NodePath) (1)

10 Young-Ho Park et al.��������� 	
��
�������������
�����
�� � �
�������� �������� ������ �������� ������������ ��� �� ���� ����� �!"# ���$���� ���
�������%& '������ ��� �����
�� � �� ��
� ���������� (����� ��� �)���$��$������� ����
��*��*
���� +���� %,&-& .��� ��� ��� �� ���� +/012"#, ����� ���
�������� �������� ���������� ���
� ���������� (&3& .��� ��� ��� �� ���� ����� + �!"#, ������� �� �4��*5��� ���6���/012"# ��� ��� �������� �����&7& ������ �!"#&���
Fig. 5. XIR LPE evaluation algorithm.

Since the selection�MATCH(labelpath,LPE)LabelPathis implemented as a text search
on thelabelpath column, XIR should first convert an LPE to a keyword-based text
search condition (we call itinformation retrieval expression(IRExp)). The following
rule specifies how the conversion is done.

Rule 1 [LPE-to-IRExp] An LPEo1l1o2l2 � � � oplp, whereoi 2 f‘/’ ; ‘//’ g for i = 1; 2; � � � ;-p, is mapped to an IRExp using the following rule:o1l1) � l1 if o1 = ‘//’$l1 near(1) l1 if o1 = ‘/’lioi+1li+1) � li near(1) li+1 if oi+1 = ‘//’li near(1) li+1 if oi+1 = ‘/’

for i = 1; 2; � � � ; p� 1lp) lp near(1) &lp
wherenear(w) is the proximity operator, which retrieves the documents inwhich the
two operand keywords appear withinw words apart.

Note thatl1 andlp are respectively the root (i.e., first) node and the leaf (i.e., last)
node of the linear query pattern representing the LPE. For example, an LPE//ar-
ticle//author/last is converted to an IRExparticle near(1) author
near(1) last near(1) &last; an LPE/issue/articles//author is
converted to an IRExp$issue near(1) issue near(1) articles near-
(1) author near(1) &author. Note $issue indicates thatissue is the
root of the document.

5.2 BPE evaluation algorithm

Figure 6 shows the algorithm for evaluating a BPE. In this algorithm, XIR first decom-
poses a BPE into LPEs in the same way as XParent does, that is, one LPE from the root
to each leaf node. It then evaluates each LPE to obtain a set ofnode path sets(NPsets).

This evaluation is done in the same manner as in Equation 1, with a slight modifi-
cation to handle a branch predicate expression as�nodepath(�MATCH (labelpath;LPE)LabelPath onpid=pid �value � vNodePath) (2)

where “value� v” is a selection condition on the leaf label of the branch predicate ex-
pression (see Definition 4) included in the LPE being evaluated.

Only one of the LPEs includes the result node (defined in Section 2.3). Let us call
such an LPE theresult LPE (P0 in Figure 6). Then, XIR reduces theresult NPset

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 11��������� 	
��
�������������
�����
�� �� ��������� �������� ������ �������� ������������ ��� � ���� ����� !"#$%&'(�#"& ���)���� ���
�������* ������ ���
�� � ��� ! ��� ������ %+, %-, %., /, %01- ��� ���� %+ ����� ������ �����2 342 5�� �+ �� ��� ��� ��� ��� ���� �� %+262 ������ !"#$%&'(�#"& �7 ���������� ��� ��� �+282 �� ��)� � ��� ��������� ��� ����� %9 :;<=,>, /, !?=@A2 �����B2 5�� �9 �� ��� ��� ��� ��� ���� �� %92C2 ������ (�#"&9 �7 ���������� ��� ��� �92D2 ����)� !"#$%&'(�#"& ������� � ��� �� ���)� E���F��� (�#"&92G2 ���2H ������ !"#$%&'(�#"&2���2
Fig. 6. XIR BPE evaluation algorithm.

obtained from the result LPE throughprefix match joinwith each of the other LPEs
(P1; P2; � � � ; Pr�1 in Figure 6). Definition 8 shows a formal definition of the prefix
match join.

Definition 8. Given two relations having the schemasR(A1A2 � � �A
B1 � � �Bm) andS(A1A2 � � �A
C1 � � �Ck) that share the attributesA1A2 � � �A
, the prefix match join
betweenR andS, denoted byR B S, is defined asRB S = �R:A1=S:A1 and ��� and R:A
=S:A
(R � S)
In Definition 8, the relational schema refers to a label path and the relation instance
refers to a node path set. According to this definition, giventwo LPEs, the prefix match
join between the two NPsets obtained from them is performed as follows: (1) find the
longest common prefix label subpathl1l2 � � � l
(� A1A2 � � �A
 in Definition 8) match-
ing both LPEs; (2) find the set of common prefix node subpaths,fn1n2 � � �n
g, belong-
ing to the label subpathl1l2 � � � l
; and (3) for each node subpathn1n2 � � �n
 in the set,
select all node paths that have the subpath in common.

Example 1.Consider the BPE//article[/keyword="XML"]//author[/la-
st="Curry"]/first. The following three LPEs are generated: (1)//article/-
keyword, (2)//article//author/last, and (3)//article//author/fi-
rst. Among these, LPE 3 is the result LPE. XIR retrieves the following three node path
sets from these LPEs and the selection conditions on the leaflabels of LPE 1 and LPE 3:
NPset1 f1.12.13.23g from LPE 1 andkeyword = "XML", NPset2 f1.12.13.18.21g
from LPE 2 andlast="Curry", and NPset3 f1.12.13.18.19, 1.12.25.30.31g from
LPE 3. Then, the prefix match join with NPset2 reduces NPset3 to f1.12.13.18.19g
based on the common prefix label subpath/issue/articles/article/author,
and a further join with NPset1 keeps NPset3 to bef1.12.13.18.19g based on the com-
mon prefix label subpath/issue/articles/article.

Figure 7 shows the SQL statement generated for this BPE. It implements the prefix
match join of node sets shown in Algorithm XIRBPE evaluation by performing tuple-
by-tuple prefix matches. The functionPrefix matching performs a prefix match
between two node paths provided as the first two input arguments (e.g.,n1.nodepath
andn2.nodepath) by comparing only the prefix characters whose length is returned
from the functiongetCommonPrefixLength. This function takes as inputs two
LPEs and two label paths matching them and calculates the prefix length in the follow-
ing steps: (1) identify the longest common prefix subexpression of the two input LPEs

12 Young-Ho Park et al.

(e.g.,//article common to//article/keywordand//article/author-
/last in Figure 3), (2) for each of the two input label paths (e.g.,p1.labelpath
andp2.labelpath), count the number of prefix labels matching the common prefix
subexpression (e.g., count 3 for a label path$issue.issue.articles.article-
.keyword.&keyword in Figure 3, excluding$issue, which is an extra addition to
the label path), and (3) if the two counts are equal then return the count and other-
wise return -1.������ �������� �	
��
��� �	
������������ ��������� ��� ��������� ��� ��������� �	��������� ��� �������� ��� �������� �	����� ��
��� ��
���!�� ��
��� ��
���!�� �	
��� �	
���!�� ��
"��#� $$%��&&!�� ��
"��#� $$�#''(&&!�� �!���)��
���������� *�'��
��+ ��!�)�, *-�(.�'�+,!�� �!���)��
���������� *�'��
��+ ��!�)�!%���, *�#���'+��!�)�, *��/�+,!�� �!���)�	
���������� *�'��
��+ ��!�)�!%���, *�#���'*��!�)�, *0�'/�& ��!�)�, +10�'/�+,!�� �'�0�234��
���5)��
��������� ��
���������5����44���'�0�2���5��)��
���������� ��
����������$$66�'��
��6-�(.�'�&&� $$66�'��
��66�#���'6��/�&&,,!�� �'�0�234��
���5)��
��������� �	
���������5����44���'�0�2���5��)��
���������� �	
����������$$66�'��
��66�#���'6��/�&&� $$66�'��
��66�#���'60�'/�&&,,7

Fig. 7. XIR SQL statement for the BPE in Example 1.

The query processing algorithms of XRel, XParent, and XIR share the same out-
line, but have some different implementations leading to their performance differences.
In the case of LPEs, XIR’s performance advantage over both XRel and XParent comes
from using inverted index search instead of string match forfinding label paths match-
ing the LPE. In the case of BPEs, XIR has the performance advantage over XRel in that
it generates a smaller number of LPEs for the same BPE. Another major performance
advantage of XIR for BPEs over both XRel and XParent comes from the number of
joins performed and the cardinalities of node sets joined todetermine the node (or node
path) set returned as the query result. XIR requires a far less number of joins compared
with XRel and XParent. Besides, the cardinalities of node sets joined in XIR or XRel
are smaller than those in XParent. Details of the analysis can be found in the reference
[25].

6 Performance Evaluation

We compare the query processing performance of XIR with those of XRel and XParent.
The results show that XIR is far more efficient than both XRel and XParent.

6.1 Experimental setup

Databases We have collected 10008 real-world XML documents from the Internet
using two web crawlers: Teleport Pro Version 1.29.1959 [28]and ReGet Deluxe 3.3
Beta (build 173) [27]. For crawling XML documents, we first start with base URLs,
and then, crawl all XML documents reachable from the base URLs. The base URLs
include web sites of major universities, companies, and publishers in several countries.
Note that about 91% of the XML documents are 4 Kbytes or less.

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 13

Using the collected XML documents, we have constructed five sets of data files
of different sizes. Each set contains approximately 5000, 10000, 20000, 40000, and
80000 distinct label paths. The last set has 1460000 node paths. A larger set contains
all label paths in a smaller set, i.e., is a superset of smaller sets. Documents in each set
are then parsed, and the parsed results are loaded into threedatabases, each containing
tables used by XRel, XParent, and XIR methods. The total number of databases thus
generated is fifteen.

For XRel and XParent, we have used the database schema and indexes as they were
used in the original designs [14, 24]. For XIR, we have loadedthe data files into the
LabelPath andNodePath tables, created B+-tree indexes on the columnspid,
docid of each table as in XRel or XParent, and created an inverted index on thela-
belpath column of theLabelpath table.

The resulting database size for XIR is 454 Mbytes for 79943 distinct label paths
and is 10% - 29% smaller than those of XRel or XParent. Detailsof the analysis can be
found in the reference [25].
Queries Table 1 shows three groups of tree pattern queries: a group ofLPEs, a group
of BPEs whose branch predicate expressions do not contain selection conditions, and
a group of BPEs whose branch predicate expressions do contain selection conditions.
Each group has two sets of queries: one is onissue documents; the other onmovie
documents. The former has far more document instances than the latter.

Table 1.Queries.����� ����	
��� ������
 ��������� ������������������������� ������������� !������������������" ��#�$����� ����������%���& �'����(���) ��#�$��� ������ ����������*��� �������+��,�-.��/0��������+�!���0������*��� �������+��,�-.��/0������ !�+���##��-0��������+�!���0������*��" ��#�$��+�/��� ���0��� ���+��.��/0�������%���& �'*��� .��������!� ���1 �1/����1�(*��) ��#�$��+�/��� ���0� ���+�� �����0��� ���+��.��/0�������*�2� �������+��,�-.��/34456�770������ !�+���##��-0��������+�!���0������*�2� �������+��,�-.��/34456�770������ !�+���##��-0��������+�!���3442#���770������*�2" ��#�$��+�/��� ����!���3446�1/��770��� ���+��.��/0�������%���& "'*��� .�����!� ���1 �1/����1�(*�2) ��#�$��+�/��� ����!���3446�1/��770��� ���+��.��/3448� ��770�������
Computing environment We have conducted the experiments using the Odysseus

object-relational database management system6 on SUN Ultra 60 workstation with
512 Mbyte RAM. In order to eliminate the unpredictable buffering effect in the op-
erating system, we have used a raw disk device to bypass the OSbuffer. We have also
flushed the DBMS buffer after each query execution so that theexecution does not affect
later ones. The cost metrics used are the elapsed time and thenumber of disk I/O’s.
6.2 Experimental results
Since the crawlers collectarbitrary documents from the Internet, new label paths are
added as new documents are added by crawling. We have extracted the number of dis-
tinct label paths from the XML documents collected. We crawled a total of 10009 XML
documents extracting 79943 distinct label paths.

Figure 8 shows the costs of the query LPE4 in Table 1 for the three methods as the
number of distinct label paths increases. Figures 9 and 10 show those for BPE2 and
BPS1 in Table 1. The buffer size has been set to 200 4Kbyte-pages to eliminate extra
disk I/O’s caused by an insufficient buffer size. Due to spacelimit, we omit the figures
of the other queries; their costs show similar trends with typical curves.

6 Odysseus has been developed at the KAIST Advanced Information Technology Research Cen-
ter, and provides the key operations needed by a text search engine.

14 Young-Ho Park et al.�� �� � ��� �� 	
 � �
	�� �� � ��� �� 	
 � �
	�� �� � ��� �� 	
 � �
	�� �� � ��� �� 	
 � �
	
����������������� � ����� ����� ����� ����� ��������
�	 � ��
 �� � ��� � �� �	 � �� � ����
�	 � ��
 �� � ��� � �� �	 � �� �����
�	 � ��
 �� � ��� � �� �	 � �� � ����
�	 � ��
 �� � ��� � �� �	 � �� ����� !"#$%&'#�� !"#$%&'#�� !"#$%&'#�� !"#$%&'# ('")('")('")('") * +, *-./012 * ,03 ���� � ��
�	 � ��
 �� 4 567 8����� � ��
�	 � ��
 �� 4 567 8����� � ��
�	 � ��
 �� 4 567 8����� � ��
�	 � ��
 �� 4 567 8�

�9�������9�������9�� � ����� ����� ����� ����� ������:;<=>? @A BCD ECFGE HI=> H JIEKD:;<=>? @A BCD ECFGE HI=> H JIEKD:;<=>? @A BCD ECFGE HI=> H JIEKD:;<=>? @A BCD ECFGE HI=> H JIEKDLMNOPQRSTUVWLMNOPQRSTUVWLMNOPQRSTUVWLMNOPQRSTUVW XYZ[VXYZ[VXYZ[VXYZ[V * +, * -./012 *,03
Fig. 8.Query costs of XRel, XParent, XIR for LPE4 (buffer size = 200 pages).\]^_ ` ^ab cd e f g hie\]^_ ` ^ab cd ef g hie\]^_ ` ^ab cd e f g hie\]^_ ` ^ab cd ef g hie

jkjjjljjjmjjjnjjjojjjjokjjj j kjjjj ljjjj mjjjj njjjj ojjjjjpqire s t u f hd g hvw g ab re a cbg xdpqire s t u f hd g hvw g ab re a cbg xdpqire s t u f hd g hvw g ab re a cbg xdpqire s t u f hd g hvw g ab re a cbg xdyz{|}~����~yz{|}~����~yz{|}~����~yz{|}~����~ ��}���}���}���}� � �� � ������ � �� � \] ^_ ` pqire s tu f hd � ��� �d\]^_ ` pqire s tu f hd � ��� �d\] ^_ ` pqire s tu f hd � ��� �d\]^_ ` pqire s tu f hd � ��� �d
j�jjojjjo�jjkjjjk�jj�jjj j kjjjj ljjjj mjjjj njjjj ojjjjjpqire s t u f hd g hvw g ab re a cb g xdpqire s t u f hd g hvw g ab re a cb g xdpqire s t u f hd g hvw g ab re a cb g xdpqire s t u f hd g hvw g ab re a cb g xd����~�����}�����~�����}�����~�����}�����~�����}� ��� }��� }��� }��� } � �� � ������ � ���

Fig. 9.Query costs of XRel, XParent, XIR for BPE2 (buffer size = 200 pages).¡¢£ ¤ ¥ ¦§¨©ª « ¬ ­ ®¯«¡¢£ ¤ ¥ ¦§¨©ª « ¬ ­ ®¯«¡¢£ ¤ ¥ ¦§¨©ª « ¬ ­ ®¯«¡¢£ ¤ ¥ ¦§¨©ª « ¬ ­ ®¯«
°±°°°²°°°³°°°´°°°µ°°°¶°°° ° ²°°°° ´°°°° ¶°°°° ·°°°° ±°°°°°¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨ ­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨ ­ ÀªÁÂÃÄÅÆÇÈÉÊÆÁÂÃÄÅÆÇÈÉÊÆÁÂÃÄÅÆÇÈÉÊÆÁÂÃÄÅÆÇÈÉÊÆ ËÊÅÌËÊÅÌËÊÅÌËÊÅÌ Í ÎÏ Í ÐÑÒÓÔÕ Í ÏÓ Ö ¡¢£ ¤ ¥ ¸¹¯º« » ¼½ ¬ ®ª × ØÙÚ Ûª¡¢£ ¤ ¥ ¸¹¯º« » ¼½ ¬ ®ª × ØÙÚ Ûª¡¢£ ¤ ¥ ¸¹¯º« » ¼½ ¬ ®ª × ØÙÚ Ûª¡¢£ ¤ ¥ ¸¹¯º« » ¼½ ¬ ®ª × ØÙÚ Ûª

°µ°°±°°°±µ°°²°°° ° ²°°°° ´°°°° ¶°°°° ·°°°° ±°°°°°¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ Àª¸¹¯º« » ¼½ ¬ ®ª ­ ®¾¿ ­ §¨ º« § ©¨­ ÀªÜÝÊÞÆßàáÇÉÅâÜÝÊÞÆßàáÇÉÅâÜÝÊÞÆßàáÇÉÅâÜÝÊÞÆßàáÇÉÅâ ãäåæÅãäåæÅãäåæÅãäåæÅ Í ÎÏ Í ÐÑÒÓÔÕ Í ÏÓÖ
Fig. 10.Query costs of XRel, XParent, XIR for BPS1 (buffer size = 200 pages).

In Figures 8 through 10, we see that XIR is more efficient than both XRel and
Xparent7. The performance gap varies from several orders of magnitude in the case of
LPEs to several factors in the case of BPEs. In particular, the costs of LPEs increase
nearly linearly for XRel and XParent while sublinearly – nearly constant – for XIR.
This amounts to the difference between the string match and inverted index search for
finding matching label paths. In the case of BPEs, the costs increase linearly for all three
methods, but the slope is the smallest for XIR. This comes from XIR’s join performance
advantage [25]. When comparing the BPEs without selection conditions (Figure 9) and
those with selection conditions (Figure 10), we see that thegaps among the costs of
the three methods are smaller for BPEswith selection conditions. The reason for this is
that XRel or XParent can take advantage of the B+-tree index created on the‘value’
column of the tableText or Data.

7 As mentioned in Section 3.2, we use the tableAncestor to be able to support partial match
queries in XParent [14], [15]. This causes XParent to show poorer performance than XRel due
to the cardinality of theAncestor table that is heavily involved in joins. This is in contrast
with the results shown in the XParent papers [14], [15], where the performances of only full
match queries using the DataPath table were presented.

Efficient Evaluation of Partial Match Queries for XML Documents Using IR 15

7 Conclusions
We have proposed a novel approach called XIR to processing partial match queries on
a large number of heterogeneous XML documents typical in theInternet environment.
For this purpose, we have presented two key techniques. In the first technique, we treat
the label paths occurring in XML documents as texts and create an inverted index on
them. This inverted index supports much faster partial match than XRel’s or XParent’s
string match when evaluating a linear path expression. In the second technique, we
use prefix match joins to evaluate a branching path expression. A branching path ex-
pression is decomposed into linear path expressions, and the results of evaluating each
linear path expression are combined using the prefix join. Using the prefix join signif-
icantly reduces the number of joins compared with the containment join used in XRel
or XParent.

Through extensive experiments, we have compared the performance of XIR with
those of XRel and XParent using real XML documents crawled from the Internet. The
results show that XIR is significantly more efficient than XRel or XParent.

References

1. A. Aboulnaga, A. R. Alameldeen, and J. Naughton, “Estimating the Selectivity of XML Path
Expressions for Internet Scale Applications,” InProc. the 27th Int’l Conf. on Very Large Data
Bases (VLDB), pp. 591-600, Rome, Italy, Sept. 11-14, 2001.

2. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, D. Srivastava,“Minimization of Tree Pattern
Queries,” InProc. 2001 ACM SIGMOD Int’l Conf. on Management of Data, pp. 497-508,
Santa Barbara, California, May 21-24, 2001.

3. M. Altinel, M. J. Franklin, “Efficient Filtering of XML Documents for Selective Dissemi-
nation of Information,” InProc. the 26th Int’l Conf. on Very Large Data Bases (VLDB), pp.
53-64, Cairo, Egypt, Sept. 10-14, 2000.

4. S. Al-Khalifa, H. V. Jagadish, N. Koudas, and J. M. Patel, “Structural Joins: A Primitive for
Efficient XML Query Pattern Matching,” InProc. the 18th Int’l Conf. on Data Engineer-
ing (ICDE), pp. 141-152, San Jose, California, Feb. 26 - Mar. 1, 2002.

5. Jan-Marco Bremer and Michael Gertz, “XQuery/IR: Integrating XML Document and Data
Retrieval,” InProc. the Fifth Int’l Workshop on the Web and Databases (WebDB 2002), pp.
1-6, Madison, Wisconsin, 2002.

6. N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins: Optimal XML Pattern Match-
ing,” In Proc. 2002 ACM SIGMOD Int’l Conf. on Management of Data, pp. 310-321, Madi-
son, Wisconsin, June 3-6, 2002.

7. J. Clark and S. DeRose, XML Path Language (XPath), W3C Recommendation,
http://www.w3.org/TR/xpath, Nov. 1999.

8. B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon, “A Fast Index
for Semistructured Data,” InProc. the 27th Int’l Conf. on Very Large Data Bases (VLDB),
pp. 341-350, Rome, Italy, Sept. 11-14, 2001.

9. Daniela Florescu, Donald Kossmann, and Ioana Manolescu,“Integrating Keyword Search
into XML Query Processing ,” InProc. the 9th WWW Conference/Computer Networks, pp.
119-135, Amsterdam, NL, May 2000.

10. Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram, “XRANK: Ranked
Keyword Search over XML Documents,” InProc. 2003 ACM SIGMOD Int’l Conf. on Man-
agement of Data, pp. 16-27, San Diego, California, June 9-12, 2003.

11. R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases,” InProc. the 23th Int’l Conf. on Very Large Data Bases (VLDB),
pp. 436-445, Athens, Greece, Aug. 26-29, 1997.

16 Young-Ho Park et al.

12. A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao, F. Tian, S. Viglas,
Y. Wang, J. F. Naughton, and D. J. DeWitt, “Mixed Mode XML Query Processing,” InProc.
the 29th Int’l Conf. on Very Large Data Bases (VLDB), pp. 225-236, Berlin, Germany, Sept.
9-12, 2003.

13. Z. Ives, A. Levy, and D. Weld, Efficient Evaluation of Regular Path Expressions on Stream-
ing XML Data, Technical Report UW-CSE-2000-05-02, University of Washington, 2000.

14. H. Jiang, H. Lu, W. Wang, and J. Xu Yu, “Path Materialization Revisited: An Efficient Stor-
age Model for XML Data,” InProc. the 13th Australasian Database Conference (ADC), pp.
85-94, Melbourne, Australia, Jan. 28 - Feb. 1, 2002.

15. H. Jiang, H. Lu, W. Wang, and J. Xu Yu, “XParent: An Efficient RDBMS-Based XML
Database System,” InProc. the 18th Int’l Conf. on Data Engineering (ICDE), pp. 335-336,
San Jose, California, Feb. 26 - Mar. 1, 2002.

16. H. Jiang, W. Wang, H. Lu, and J. X. Yu, “Holistic Twig Joinson Indexed XML Documents,”
In Proc. the 29th Int’l Conf. on Very Large Data Bases (VLDB), pp. 273-284, Berlin, Ger-
many, Sept. 9-12, 2003.

17. Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expressions,” In
Proc. the 27th Int’l Conf. on Very Large Data Bases (VLDB), pp. 361-370, Rome, Italy, Sept.
11-14, 2001.

18. F. Mandreoli, R. Martoglia, P. Tiberio, “Searching Similar (Sub)Sentences for Example-
Based Machine Translation,” InProc. 2002 Italian Symposium on Sistemi Evoluti per Basi
di Dati (SEBD’02), Isola d’Elba, Italy, June 2002.

19. J. McHugh, J. Widom, “Query Optimization for XML,” InProc. the 25th Int’l Conf. on Very
Large Data Bases (VLDB), pp. 315-326, Edinburgh, Scotland, UK, Sept. 7-10, 1999.

20. J. Naughton et al., “The Niagara Internet Query System,”IEEE Data Engineering Bulletin,
pp. 27-33, Vol. 24, No. 2, June, 2001.

21. N. Polyzotis and M. Garofalakis, “Statistical Synopsesfor Graph-structured XML
Databases,” InProc. 2002 ACM SIGMOD Int’l Conf. on Management of Data, pp. 358-369,
Madison, Wisconsin, June 3-6, 2002.

22. G. Salton and M. McGill,Introduction to Modern Information Retrieval, McGraw-Hill, New
York 1983.

23. I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang,
“Storing and Querying Ordered XML Using a Relational Database System,” InProc. 2002
ACM SIGMOD Int’l Conf. on Management of Data, pp. 204-215, Madison, Wisconsin, June
3-6, 2002.

24. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A Path-based Approach
to Storage and Retrieval of XML Documents using Relational Databases,”ACM Trans. on
Internet Technology(TOIT), pp. 110-141, Vol. 1, No. 1, 2001.

25. Y. Park, K. -Y. Whang, B. Lee, W. Han, “Efficient Evaluation of Partial Match Queries for
XML Documents Using Information Retrieval Techniques,” Technical Report CS-TR-2004-
212, Department of Computer Science, KAIST, Dec., 2004. Also, available on AITrc Tech-
nical Report No. 04-11-048,http://aitrc.kaist.ac.kr/utiltr.htm, Dec. 28, 2004.

26. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohmann, “On Supporting Con-
tainment Queries in Relational Database Management Systems,” In Proc. 2001 ACM SIG-
MOD Int’l Conf. on Management of Data, pp. 425-436, Santa Barbara, California, May
21-24, 2001.

27. ReGet Deluxe 3.3 Beta (build 173),http://deluxe.reget.com/en/.
28. Teleport Pro Version 1.29,http://www.tenmax.com/teleport/pro/home.htm.
29. Xyleme,http://www.xyleme.com.
30. eXtensible Markup Language(XML),http://www.w3.org/XML/.

