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Abstract. We propose XIR, a novel method for processing partial mateigs
on heterogeneous XML documents using information retti@®) techniques.
A partial match query is defined as the one having the desoéwndeself axis
“II" in its path expression. In its general form, a partialtofaquery has branch
predicates forming branching paths. The objective of XIRvigfficiently sup-
port this type of queries for large-scale documents of bgemeous schemas.
XIR has its basis on the conventional schema-level metheitg uelational ta-
bles and significantly improves their efficiency using twohteiques: an inverted
index technique and a novel prefix match join. The formerxedehe labels in
label paths as keywords in texts, and allows for finding thellpaths matching
the queries more efficiently than string match used in the@ational methods.
The latter supports branching path expressions, and aflavfgding the result
nodes more efficiently than containment joins used in the@@ational methods.
We compare the efficiency of XIR with those of XRel and XPanesing XML
documents crawled from the Internet. The results show thRt iX more effi-
cient than both XRel and XParent by several orders of madeifar linear path
expressions, and by several factors for branching patresgjams.

1 Introduction

Recently, there have been significant research on procagseries against XML docu-
ments [30]. To our knowledge, however, most of them considlenly a limited number
of documents with a fixed schema, and thus, are not suitablarfge-scale applica-
tions dealing with heterogeneous schemas—such as andhserarch engine [20] [29].
A novel method is needed for these applications, and we addrin this paper.
Partial match queries in XPath [7] can be particularly uké&iusearching XML

documents when their schemas are heterogeneous while ariglschema informa-
tion is known to the user. Here, a partial match query is ddfasethe one having the

** This work was supported by the Korea Science and EngineBrnogdation (KOSEF) through
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descendent-or-self axis “//" in its path expression. A falitch query [18] can be con-
sidered a special case of a partial match query.

Partial match queries can be classified ifitar path expressions (LPEshd
branching path expressions (BPE#n LPE is defined as a path expression consist-
ing of a sequence of labels having a parent-child relatipnshan ancestor-descendent
relationship between labels; a BPE is defined as a path esiprelsaving branching
conditions for one or more labels in the LPE.

Existing methods for providing partial match queries canclassified into two
types: schema-level methods [24] [14] [15] [8] and instalexe| methods [17] [26]
[4][6] [16][5]1]9] [10] [12]. The ones of the first type are usie for both partial match
queries and BPEs, but they are not designed for use in la@e-documents of hetero-
geneous schemas [24] [14] [15] or have only limited supparpfartial match queries
and do not explicitly handle BPEs [8]. The ones of the secgpd tan support both,
but can not be best used in a large-scale database becane#iofgncy. Between these
two classes of methods, the schema level methods are mu@hfeamible than the in-
stance level methods for large-scale XML documents beaafutbeir abilities to “filter
out” document instances at the schema level. We thus adegttiema-level methods
as the basis of our method.

We particularly base our method on the schema-level methsidg relational ta-
bles such as XRel [24] and XParent [14] [15]. There are two readon this. First,
those methods can utilize well-established techniqueselational DBMSs instead of a
few native XML storages. Second, those methods can alspeu8IQLs to query XML
documents. For the query processing, they store the schdoranation and instance
information of XML documents in relational tables, and gss partial match queries
in two phases: first, find the XML documents whose schemasmaatgiery’s path ex-
pression, and second, among the documents, find those tisé salection conditions
(if there are any) specified on the path expression.

However, query processing efficiencies of the two existieghads, XRel and XPar-
ent, are too limited for large-scale applications, as wé stibw in our experiments in
Section 6. The hurdle in the first phase is the large amourdtedraa information, and
the hurdle in the second phase is the large number of docunstanhces.

The objective of our method (we nameXiIR) is to improve the efficiencies in both
phases. Specifically, for the first phase, we present a métlavddopts thewerted in-
dex[22] technique, used traditionally in the Information rewal (IR) field, for search-
ing a very large amount of schema information. IR technicheg& been successfully
used for searching large-scale documents with only a fewkeys (constituting partial
schema information). If we treat the schema of an XML docurasra text document
and convert partial match queries to keyword-based textBepueries, we can effec-
tively search against heterogeneous XML documents usirtgapmatch queries. For
the second phase, we present a novel method caltetix match joinfor searching a
large amount of instance information.

In this paper, we first describe the relational table stmgstdor storing the XML
document schema and instance information, and then, tedtr structure of the in-
verted index. We then present the algorithms for procesgirggies. We also present
the prefix match join operator, which plays an essentialirote evaluation of BPEs,
and present an algorithm for finding the nodes matching the. Bien, we discuss
the performance of XIR in comparison with that of XRel and ¥, and verify our
comparison through experiments using real XML documerst ceflected by crawlers
from the Internet. The results show that XIR outperforms$bdRel and XParent by
several orders of magnitude for LPEs and by several factorBREs.
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This paper makes the following novel contributions towandyé-scale query pro-
cessing on heterogeneous XML documents:

¢ In XIR, we apply the IR technology to the schema-level infation rather than to
the instance-level information of the XML documents. In ey&scale heteroge-
neous environment, schema-level information as well aairtg-level information
would be extremely large. By applying the IR technique tostieema-level infor-
mation, we can improve performance significantly by acmig\dchema-level fil-
tering. i.e., restricting the instances to be searchedasetivhose schema matches
the query’s path expression.

¢ XIR also presents a novel instance-level join called thdiyraatch join for effi-
ciently processing queries involving BPEs. The prefix mgaahnimproves perfor-
mance significantly by minimizing the number of joins for fingl instance nodes
satisfying branching predicates.

2 Preliminaries
2.1 XML document model

Our XML document model is based on the one proposed by Brumb §8]. In this
model, an XML document is represented as a rooted, ordeabdldd tree. Aodein
the tree represents an element, an attribute, or a valued@ein the tree represents
an element-subelement relationship, element-attrit@iédionship, element-value rela-
tionship, or attribute-value relationship. Element andtatte nodes collectively define
the document structure, and we assign labels (i.e., nanmeshiaique identifiers to
them. Figure 1 shows an example XML tree of a document. Irfitise, all leaf nodes
except those numbered 15 and 27 (representing the twoudétnialues “R” and “T")
represent values and all non-leaf nodes except those naechhdrand 26 (representing
the attribute@at egor y) represent elements. Note that attributes are distingdish
from elements using a prefix ‘@’ in the labels.

1.
issue

—

2
editor 7editor 12 articles

3 -
first “last 8first 10 last
| l | | 13 article 25 article
4 6 9 11
“Michael” “Franklin” “Jane” “Poe” / \ / \
" 18 23 2 28, 30 %
@category mtitle author keyword  @category title author keyword
151 17| 19/ z} 24| 27| 29| 1 / 33\ 36|
“R” “XMLschema” first ~ last  “XML” T -oopp” first last  “DB”
20| 22| 32 | 34|
**David”“Curry” “John” “Smith”

Fig. 1. An example XML tree of a document.

We modify this model so that a node represents either an elieonan attribute but
not a value. We also extend the model with the notions of lpb#is and node paths as
defined below.

Definition 1. A label pathin an XML tree is defined as a sequence of node labels
l1,13,...,1p, (p > 1) from the root to a nodg in the tree, and is denoted &g. --- .I,,.

O
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Definition 2. A node pathin an XML tree is defined as a sequence of node identi-
fiersni,ns,...,n, (p > 1) from the root to a node in the tree, and is denoted as
ny.na. -+ Nyp. O
Label paths represent XML document structures and are cdid4chema-levehfor-
mation. In contrast, node paths represent XML documendirtgs and are said to be
instance-leveinformation. We say a label pathatches path expression, a node path
belongs taa label path, and a node pathobtained froma path expression. For exam-
ple, in Figure 1j ssue. edi tor. fi r st is a label path matching a path expression
/leditor//first,and1.2.3,1.7.8 are node paths belonging to the label Hatk.
that there may be more than one node path belonging to the Iséelepath because
there may be more than one instance with the same structure.

2.2 XML query model

Our query language belongs to the tree pattern query (TR} ¢R]. The query lan-
guage supports two kinds of path expressions: 1) linearggitessions (LPEs) and 2)
branching path expressions (BPES).

An LPE is expressed as a sequence of labels connected with'//" as in Defini-
tion 3.

Definition 3. A linear path expressiors defined agyo11;021l5 - - - 0,1, Wherel; (i =
0,1,---,n)is thei-th labelin the path, ane}; (j = 1,2, - - -, n) is either '/’ or "/’ which,
respectively, denotes a parent-child relationship or aestor-descendant relationship
betweeri;_; andl;. Here,l, is the root of the XML tree denoting the set of all XML
documents (i.edocunent ("*") ) and may be omitted. 0O

A BPE is expressed as an LPE augmented with ‘branch predizatessions’(’;]
for some labels; (i € {1,2,---,n}) [7] as in Definition 5. As in some work in the
literature [1] [21], for simplicity, we consider only simpbkelection predicatéor the
branch predicate expressions as in Definition 4.

Definition 4. A branch predicate expressidry, is defined as an expressidor L 6 v,
wherelL is a linear path subexpressiog (1 0k2lk2 - - 0gplip (p > 1), v is a constant
value, and is a comparison operatof (€ {=,#,>,>, <, <}). L specifies the ex-
istence of a node patty .ns. - - - .n, that belongs to the label path matching the LPE
loo1l102 - - - 01Ok L1 Ok2li2 - - - Okplip, @aNAL B v further specifies the node path to sat-
isfy the selection condition on,,. 0

Definition 5. A branching path expressiaadefined a% o1 11[C1]o202[Ca] - - - 0,1, [Ch]
where (1)go1110515 - - - 0,1, is an LPE defined in Definition3and &), (k = 1,2, - - ,-
n) is abranch predicate expressi@s defined in Definition 4, where some (not all) of
them may be omitted. 0

The following query is an example BPE for retrieving thet | e elements that are
children of thear t i cl e elements that contain at least dceywor d element and that
are descendants of arssue element having a descendanit hor element whose
childl ast element has the valueCur ry".

Q1::/issue[//author/last="Curry"]//article[/keyword]/-
title

4 This can be easily extended to consider compound (e.gymciije) predicates as supported
in other work in the literature [4] [6]. However, we omit thiigsue since it is not the focus of
this paper.



Efficient Evaluation of Partial Match Queries for XML Docunis Using IR 5

Note that this BPE on the elemérgsue has a selection condition on the labelst in
the LPE/ /i ssue/ [ aut hor /| ast and an existential condition on the latkedy -
wor dinthe LPE/ /i ssue//articl e/ keyword.

2.3 XML query patterns

In this paper, we model a path expression gaery patterrdefined in Definition 6. We
modify the definition of the twig pattern originally used hetHolistic Twig Join [6] to
formally represent the notions that we use in this paper.défimition is based on the
BPE, as defined in Definition 5.

Definition 6. Given a path expressianl;[C1]o2l2[C5] - - - 0,1, [C},] defined in Defini-
tion 5 (with [y omitted), we represent it asqaery patterrthat consists of a binary tree
and a dangling edge connected to its root and that has tlosvialy properties:

e Anedgerepresents (j € {1,2,--,n})inthe path expression. The edge is shown
as a single line ifo; is '/ and as a double line ib; is ‘//'. The dangling edge
represents; .

e A node represents a labkl (k € {1,2,---,n}) in the path expression. The root
node represents the laliel

e The left child of a node representing(k € {1,2,---,n — 1}) represents; ;.

e The right subtree of a node representingk € {1,2,---,n}) is the query pattern
representing the branching predicate expresSioe og1lk10k2lk2 - -+ ogplip (p >
1).

o If the label represented by a node has a selection conditiosi’ on it, then the
node is earmarked withg"v”. 0

The twig pattern [6] does not distinguish between the sehirieose root is also the
root of the XML tree and the one whose root is not, if both matwh same pattern.
In contrast, the query pattern does distinguish betweean the showing the dangling
edge using a single line in the former case and a double litreeitatter case.

Related to the query pattern, we use the following termsiggaper.

e One of the nodes in a query pattern is retrieved as the qusnjtrdhis node
corresponds to the labg| in the LPE defined in Definition 3 or the BPE defined
in Definition 5. We call this node theesult nodeand distinguish it from the other
nodes by shading it gray.

e Some of the nodes in a query pattern have a right subtree. IMsuch a node a
branching nodeAny node corresponding to a labigifollowed by[C] as inli[C}]
shown in Definition 5 is a branching node.

Figure 2 shows the query pattern of the query Q1 in SectionTh@ node it e
is the result node, and the nodessue andar ti cl e are branching nodes.
As a special case of the query pattern, we definditiear query patterras follows.

Definition 7. The query pattern of a linear path expression is calleditiear query
pattern Compared with the query pattern defined in Definition 6, edinquery pattern
has no branching node. 0

In this paper, we use the termmot label leaf labe] result labe] andbranching
labelin a path expression interchangeably with thet node leaf node result node
andbranching nodeén a query pattern. For example, in Figurei Zsue is the root
label of the query Q1titl e, keyword, andl ast are leaf labelstitl e is the
result label; and ssue andar ti cl e are branching labels.
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Fig. 2. Query pattern of the query Q1.

3 Related Work

As mentioned in Introduction, there are two kinds of methfmtevaluating path ex-

pressions: schema-level methods and instance-level aethoschema-level method
uses structural information like the label paths to find moafatching a path expres-
sion [14] [15] [24] [8], whereas an instance-level methodausnly node identification
information like the start and end positions of a node [4][[&]]. In this section, we

briefly discuss instance-level methods, and then, focuslbersa-level methods.

3.1 Instance-level methods

There have been three different approaches for the instamebmethod. The first uses
XML tree navigation [3] [13] [19]. It converts a path expr&ssto a “state machiné’
and then evaluates the path expression by navigating the Xé#_guided by the state
machine. The second uses node instance information stored£h node in an XML
tree [4] [6] [16] [17] [23] [26]. It converts a path expressito a (structural) join query,
and then evaluates the join query using the node instancenation. The query eval-
uation in this approach, however, involves comparing théeniastance information,
and therefore, tends to be more expensive than in the sclemlanethods, which can
filter out node instances significantly by using the scherfaiimation. The third uses
information retrieval (IR) technique, particularly an éred index created on XML
documents [5] [9] [10] [12]. Although using inverted indexé&owever, they are funda-
mentally different from XIR, which creates an inverted irdm thelabel pathswhich
are schema-level information.

3.2 Schema-level methods

Schema-level methods are categorized into those usingaspeacpose indexes [8] [11]
and those using relational tables [24] [14] [15] dependingvbere and how label paths
are stored. In the former case, label paths are stored dga#dyms they are used in the
queries. In the latter case, all label paths in the docunaetstored in the tables of a
relational DBMS a priori.

Index Fabric [8] is considered the representative methdldérschema-level meth-
ods using special purpose indexes. Index Fabric uses thei®#tie to index the label
paths and values that have occurred in the queries occurgggently. However, In-
dex Fabric is not meant to support partial match querieshEumore, the method is
not designed to support BPEs, which are very effective farceng in a heteroge-
neous environment. These are critical drawbacks that rehdenethod inapplicable in
a large-scale, heterogeneous environment. Thus, in tbiaewe primarily focus on
the schema-level methods using relational tables.

5 A representation of the sequence of labels in the path esipress a sequence of states in
finite state automata.
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XRel [24] and XParent [14] [15], which are the two represéméaones among the
schema-level methods using relational tables, providesss liar our XIR method. We
describe each method in this subsection. We use the nedrinterchangeably with
elemenbor attributeas these are represented as nodes in the XML document matel an
the query pattern.

XRel In XRel, the XML tree structure information is stored in thaléwing four
tables [24]:

Pat h( | abel pat h.i d, | abel _path)

El ement (docurent i d, | abel path.id, start_position, endp-
osition, sibling_order)

Text (docunent i d, |abel path.id, start_position, end_posi-
tion, val ue)

Attribute(docunment_id, |abel path.id, start_position, en-
d_position, value)

XRel uses two techniques for evaluating LPEs and BBEisig matchandcontain-
ment join The former belongs to the schema-level method and is udegitdle LPES;
the latter belongs to the instance-level method and is uskdridle BPEs.

In the case of an LPE, XRel first finds the label paths matcHiegquery’s path
expression from th@at h table. The matching is done using the SQL string match op-
eratorL| KE. All label paths in thePat h table must be scanned in this case because
an index like the B+-tree cannot be used to search for a fgnietching label path.
Then, XRel joins the set of matching label paths with theg&blenent via the col-
umnl abel _pat h_i d to obtain the result nodes.

For the case of a BPE, we use the query pattern defined in 8&t8o XRel first
decomposes a BPE into multiple LPEs consisting of one LPE fitee root to each
branching node and one LPE from the root to each leaf nodeefxample, a BPE
Jli[/12/1ls = vs]/l4 is decomposed into three LPES, /11 /12/l5, and /1, /4. Then,
for each LPE, XRel finds the set of nodes (we calliitcale setobtained from the LPE
in the same manner described above and reduces the setaécsttisdying a selection
condition (e.g./11/l2/ls = vs). Then, it compares the node set obtained from an LPE
ending at a branching node (e.gl;) with the node set obtained from the LPEs ending
atthe leaf nodes (e.g/l1/l2/13, /11 /1s) and, among the nodes obtained from the latter
LPEs, retains only those that are descendants of the nodes former node set. This
is done using theontainment joirwhich is implemented asjoin comparing the start
positions and end positions of nodes.

XParent XParent [14][15] is similar to XRel, but uses a differentleabchema so that
it can implement the containment join operator using eqirg instead of-joins. The
schemais as follows [14].

Label Pat h(| abel path.id, |ength, |abel path)

El enent (docunent .id, | abel path.id, node.id, sibling.order)
Dat a( docurnent _i d, | abel path.d, node.id, sibling.order,

val ue)

Ancest or (node.i d, ancestor _node.id, offset_to_ancestor)

Dat aPat h( par ent _node_.i d, chil d_node.i d)

In query processing, XParent evaluates an LPE in the samasvdiRel. In the case
of a BPE, however, XParent generates a smaller number of tiREBsXRel because it
generates only those from the root to each leaf node of a quedtgrn. Then, after
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retrieving the node set in the same manner as in XRel, the setdebtained from the
LPE containing the result node is reduced through joins titdse obtained from the
other LPEs. Here, the join is performed as an equi-join thhothe tableAncest or,
thereby finding the node idenfitier of the common ancestor.

4 XIR Storage Structures

In this section, we present the storage structures used dXlBumethod. XIR stores in-
formation needed for query processing at two levels — thersehievel and the instance
level. The schema-level information consists of the lalzhp occurring in the XML
tree and the inverted index on these label paths; the insti@vel information consists
of all the node paths in the XML tree.

XIR uses two tables and an inverted index to store informadioout XML docu-
ment structure:

Label Pat h( pi d, | abel _path)
NodePat h( pi d, doci d, nodepath, val ue)
Inverted i ndex on | abel path of the table Label Path.

4.1 Schema-level information

The tableLabel Pat h represents thechema-level informatioand stores all the dis-
tinct label paths occurring in XML documents and their pdtmitifiers pi ds). Figure 3
shows thd_abel Pat h table and the inverted index for the example XML tree in Fig-
ure 1. The labels prefixed with ‘$’ and ‘&’ are added to dendte first label and the
last label of each label path. The first label is to match tlue kabel of the document,
and the last label is to match the leaf label of a path expyassi

pid Tabelpath keyword posting list
- - - $issue <1, 1,{1}, 3> <2, 1,{1}, 4> <3,1,{1},5>
! Sissue.issue issue issue D<1, 1,028 3> <2, 1,{2L 4> <3, 1, {2} 5>
2 Sissue.issue.editor.&editor &issue 1<1,1,{3} 3>
article 1 <6, 1,{4}, 5> <7,1,{4},6> <8, 1,{4},6>.
3 $issue.issue.editor.first.&first &article 1 <6, 1, {5}, 5>
4 $issue.issue.editor.last.&last zrat::ilslses :";’: :’,ﬁg: 1; <6, 1,3}, 5> <7, 1,3}, 6>
T T 7 T editor 1<2,1,{3}, 4> <3,1,{3}, 5> <4, 1,{3}, 5>
5 $issue.issue.articles.&articles editor R riipie
6 Sissue.issue.articles.article.&article author 1 <9, 1, {5}, 6> <10,1,{5}, 7> <11,1,{5}, 7>
- - - - &author 1 <9, 1, {6}, 6>
7 $issue.issue.articles.article.@category.&@category first 1 <3, 1,{4}, 5> <10, 1, {6}, 7>
- - - - - - &first 1 <10, 1, {7}, 7>
8 $issue.issue.articles.article.title.&title Jast D241, 14h 5> <11,1, 6} 7>
9 $issue.issue.articles.article.author.&author &last 1<, 1,{7}, 7>
title : <8, 1, {5}, 6>
10 $issue.issue.articles.article.author.first.&first &title 1 <8, 1, {6}, 6>
11 $issue.issue.articles.article.author.last.&last Eim:)drd i} %” }"gg}}:” g;
12 $issue.issue.articles.article.keyword.&keyword ?éﬁ%;:;yry:: i;’, II’,{((%, g;

(a) LabelPath table. (b) LabelPath Inverted Index.

Fig. 3. An example LabelPath table and inverted index.

The Label Pat h inverted index is created on theabel pat h field in thelLa-
bel Pat h table. Here, we consider label paths as text documents aetslan these
label paths as keywords. Like the traditional inverted 2], theLabel Pat h in-
verted index is made of the pairs of a keyword (i.e., a lab@f)aposting list. Each post-
ing in a posting list has the following fieldpi d, occur r ence_count , of f set s,
| abel _pat h_I engt h, wherepi d is the identifier of the label path in which the label
occurs,occur rence_count is the number of occurrences of the label within the la-
bel pathpf f set s is the set of the positions of the label from the beginnindnefiabel
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path, and abel _pat h_l engt his the number of labels in the label path. For instance,
in the posting of the labalect i onin a label patt$chapt er. chapt er. secti o-

n. section. section. paragraph. &ar agr aph,theoccur r ence_count of
sectionis 3, theof f set sofsectionis{3,4,5,andthd abel _pat h_l ength

is 7.

4.2 Instance-level information

The tableNodePat h represents thénstance-level informatiomnd stores the node
paths to uniquely identify all the nodes in the XML documeritigure 4 shows an
example of theNodePat h table for the XML tree in Figure 1.

The NodePat h table stores all the node paths in the colunadepat h. If the
leaf node of a node path has a value, then the value is stothd golumnval ue. The
columnpi d stores label path identifiers, and is used for join with tlabel Pat h
table to find all the node paths belonging to the same labél Fdte colummdoci d
stores the XML document identifiers.

pid

docid

nodepath

value

1

Null

1.2

Null

123

Michael

1.2.5

Flanklin

1.7

Null

1.7.8

Jane

1.7.10

Poe

1.12

Null

1.12.13

Null

1.12.13.14

R

| N| o | &) w| N s w] o] =

1.12.13.16

XML schema

1.12.13.18

Null

1.12.13.18.19

David

1.12.13.18.21

Curry

1.12.13.23

XML

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.
1

1.12.25

Null

1.12.25.35

DB

Fig. 4. An example NodePath table.

5 XIR Query Processing Algorithms

In this section we present the algorithms for evaluating $ BBd BPEs based on the
XIR storage structures described in the previous sectind, analytically compare
XRel, XParent, and XIR with a focus on their performancexted features.

5.1 LPE evaluation algorithm

Figure 5 shows the algorithm for evaluating an LPE. In thggoathm, XIR first finds
matching label paths in theabel Pat h table using the_abel Pat h inverted index,
and then, performs an equi-join between the set of the laibksgdound and thode-
Pat h table via the colummpi d. It then returns the matching node paths as the query
result.

Formally, an LPE is evaluated as

Il 0depath (T MATCH (1abelpath, LPE) (1)
LabelPath Xp;4=pia NodePath)
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Algorithm XIR_LPE_evaluation

Input: LPE P, LabelPath inverted index, NodePath table

Output: set of node paths NMPset matching the LPE

begin

1. Convert the input LPE Pto an IR expression £using the syntactic
mapping rule LPE-to-IRExp (Rule 1).

2. Find the set of pids (pidSed using the LabelPath inverted index
given the IR expression E.

3. Find the set of node paths (MPsed through an equi-join between
pidSet and the NodePath table.

4. Return NPset.

Fig. 5. XIR LPE evaluation algorithm.

Since the selectiomMATCH(|abe|path’LPF_L)abeIPatHs implemented as a text search

on thel abel pat h column, XIR should first convert an LPE to a keyword-basetl tex
search condition (we call information retrieval expression(IRExp)Jhe following
rule specifies how the conversion is done.

Rule 1 [LPE-to-IREXpAN LPE 01110212 - - - 0,l,, Whereo; € {'/' ' } fori =1,2,--- -
p, is mapped to an IRExp using the following rule:

I = ll if 01 = Ir
o1h1 $1, near) I, if o, =

o ) l; near(>o) li+1 if Oj41 = ‘r
lioigalivr = {zi nearQ) Ly, if oppq =/

fori=1,2,---,p—1
l, = I, near() &,

wherenear(w) is the proximity operator, which retrieves the documentwimch the
two operand keywords appear withinwords apart. 0

Note that/; andl, are respectively the root (i.e., first) node and the leaf, (iaest)
node of the linear query pattern representing the LPE. Famgke, an LPE / ar -
ticlel//author/I ast isconvertedtoanIRExprticl e near(oo) author
near (1) last near(1) & ast;an LPE/issue/articles//author is
convertedto an IRExpi ssue near (1) issue near(1l) articles near-
(o0) author near(1l) &author. Note$i ssue indicates that ssue is the
root of the document.

5.2 BPE evaluation algorithm

Figure 6 shows the algorithm for evaluating a BPE. In thi®etgm, XIR first decom-
poses a BPE into LPEs in the same way as XParent does, thaeitREE from the root
to each leaf node. It then evaluates each LPE to obtain a setdef path setb(Pset3.

This evaluation is done in the same manner as in Equationth,anglight modifi-
cation to handle a branch predicate expression as

Iodepath (T MATCH (1abelpath, LPE) )
LabelPath X pia=pid Tyalue o v NodePath)

where ‘valued v” is a selection condition on the leaf label of the branch praw ex-
pression (see Definition 4) included in the LPE being evaldiat

Only one of the LPEs includes the result node (defined in 8&e&i3). Let us call
such an LPE theesult LPE (P, in Figure 6). Then, XIR reduces thesult NPset
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Algorithm XIR_BPE_evaluation
Input: BPE P, LabelPath inverted index, NodePath table
Output: set of node paths resu/t. NPset matching the BPE
begin
{ Assume the BPE Phas rleaf labels /,, /;, 1, ..., /,; and that /,is
the result label. }
Set P, as the LPE from the root to /,
Obtain result_NPset by evaluating the LPE P,
for each of the remaining leaf nodes /;(i=1,2, ..., r-1)
begin
Set P, as the LPE from the root to /.
Obtain APset; by evaluating the LPE 2.
Reduce result_NPset through a prefix match join
with NPset;
8. end.
9 return result NPset.
end.

NownAwN =

Fig. 6. XIR BPE evaluation algorithm.

obtained from the result LPE througirefix match joinwith each of the other LPEs
(P, Ps,---,P._1 in Figure 6). Definition 8 shows a formal definition of the pxefi
match join.

Definition 8. Given two relations having the schem&éA, A, --- A.B; - - - B,,) and
S(A1As--- A.Cy ---C}) that share the attributes; A, - - - A., the prefix match join
betweenR andS, denoted byk > S, is defined as

RS =0R.A,=5.4, and - and R.A.=5.A. (R X S) 0

In Definition 8, the relational schema refers to a label patti the relation instance
refers to a node path set. According to this definition, givemLPEs, the prefix match
join between the two NPsets obtained from them is perfornsefdliows: (1) find the
longest common prefix label subpdil, - - - I.(= A; As - - - A, in Definition 8) match-
ing both LPEs; (2) find the set of common prefix node subpdths:. - - - n.}, belong-
ing to the label subpathi; - - - I.; and (3) for each node subpaihn; - - - n. in the set,
select all node paths that have the subpath in common.

Example 1.Considerthe BPE/ arti cl e[ / keyword="XM."]//author[/I a-
st="Curry"]/first.Thefollowingthree LPEs are generated:(Larti cl e/ -
keyword,(2)//articlel//author/last,and(3y/articlel//author/fi-
r st . Amongthese, LPE 3 is the result LPE. XIR retrieves the foitg three node path
sets from these LPEs and the selection conditions on théaleglf of LPE 1 and LPE 3:
NPset {1.12.13.23 from LPE 1 andkeyword = "XM.", NPset {1.12.13.18.21
from LPE 2 and ast ="Curry", and NPset {1.12.13.18.19, 1.12.25.30.3from
LPE 3. Then, the prefix match join with NPseteduces NPsgtto {1.12.13.18.19
based on the common prefix label subpatissue/ arti cl es/ arti cl e/ aut hor,
and a further join with NPsetkeeps NPsgtto be{1.12.13.18.19based on the com-
mon prefix label subpathi ssue/ articl es/article.

Figure 7 shows the SQL statement generated for this BPE pleiments the prefix
match join of node sets shown in Algorithm XIBPE evaluation by performing tuple-
by-tuple prefix matches. The functidtr ef i x_mat chi ng performs a prefix match
between two node paths provided as the first two input argtsifery.n1. nodepat h
andn2. nodepat h) by comparing only the prefix characters whose length ignet
from the functionget CormonPr ef i xLengt h. This function takes as inputs two
LPEs and two label paths matching them and calculates tHie fgegth in the follow-
ing steps: (1) identify the longest common prefix subexpoassf the two input LPES
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(e.g.//articlecommontd/articlelkeywordand/ /article/author-

/1 ast in Figure 3), (2) for each of the two input label paths (epd., | abel pat h
andp2. | abel pat h), count the number of prefix labels matching the common prefix
subexpression (e.g., count 3 for a label fhitlssue. i ssue. articles. articl e-

. keywor d. &eywor d in Figure 3, excludingi ssue, which is an extra addition to
the label path), and (3) if the two counts are equal thenmdgthe count and other-
wise return -1. 0

SELECT DISTINCT n3.docid, n3.nodepath
FROM LabelPath p1, LabelPath p2, LabelPath p3,
NodePath n1, NodePath n2, NodePath n3
WHERE p1l.pid = nl.pid
AND p2.pid = n2.pid
AND p3.pid = n3.pid
AND nl.value = ~"XML"”
AND n2.value = ~ "Curry”
AND MATCH(p1.labelpath, ‘article’ NEAR(1) ‘keyword")
AND MATCH(p2.labelpath, ‘article’ NEAR(MAXINT) ‘author'
NEAR(1) ‘last’)
AND MATCH(p3.labelpath, ‘article’ NEAR(MAXINT) ‘author’
NEAR(1) ‘first’ NEAR(1) '&first’)
AND Prefix_matching (n1.nodepath, n2.nodepath,
getCommonPrefixLength(p1.labelpath, p2.labelpath,
*//article/keyword’, * " //article/ /author/last’))
AND Prefix_matching (n2.nodepath, n3.nodepath,
getCommonPrefixLength(p2.labelpath, p3.labelpath,
% //article//author/last™, * *//article//author/first™));

Fig. 7. XIR SQL statement for the BPE in Example 1.

The query processing algorithms of XRel, XParent, and XIRrehhe same out-
line, but have some different implementations leading &rtperformance differences.
In the case of LPEs, XIR’s performance advantage over botbl dRd XParent comes
from using inverted index search instead of string matcHifaling label paths match-
ing the LPE. In the case of BPEs, XIR has the performance adgarmver XRel in that
it generates a smaller number of LPEs for the same BPE. Anothr performance
advantage of XIR for BPEs over both XRel and XParent comes fitte number of
joins performed and the cardinalities of node sets joinatttermine the node (or node
path) set returned as the query result. XIR requires a famamber of joins compared
with XRel and XParent. Besides, the cardinalities of nods gened in XIR or XRel
are smaller than those in XParent. Details of the analysisesfound in the reference
[25].

6 Performance Evaluation

We compare the query processing performance of XIR withelobXRel and XParent.
The results show that XIR is far more efficient than both XRel XParent.

6.1 Experimental setup

Databases We have collected 10008 real-world XML documents from thierdmet
using two web crawlers: Teleport Pro Version 1.29.1959 @8] ReGet Deluxe 3.3
Beta (build 173) [27]. For crawling XML documents, we firsatwith base URLS,
and then, crawl all XML documents reachable from the base $JRhe base URLs
include web sites of major universities, companies, andighirs in several countries.
Note that about 91% of the XML documents are 4 Kbytes or less.
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Using the collected XML documents, we have constructed fate of data files
of different sizes. Each set contains approximately 500000, 20000, 40000, and
80000 distinct label paths. The last set has 1460000 nodis.patlarger set contains
all label paths in a smaller set, i.e., is a superset of smsdiis. Documents in each set
are then parsed, and the parsed results are loaded intadémazases, each containing
tables used by XRel, XParent, and XIR methods. The total murobdatabases thus
generated is fifteen.

For XRel and XParent, we have used the database schema axdsrats they were
used in the original designs [14, 24]. For XIR, we have loatterdata files into the
Label Pat h and NodePat h tables, created B+-tree indexes on the columpnd,
doci d of each table as in XRel or XParent, and created an invertéekion thd a-
bel pat h column of theLabel pat h table.

The resulting database size for XIR is 454 Mbytes for 79948ttt label paths
and is 10% - 29% smaller than those of XRel or XParent. Detédilbe analysis can be
found in the reference [25].

Queries Table 1 shows three groups of tree pattern queries: a groupBs$, a group
of BPEs whose branch predicate expressions do not conteictisa conditions, and
a group of BPEs whose branch predicate expressions do n@#kection conditions.
Each group has two sets of queries: one i$ ssue documents; the other arovi e
documents. The former has far more document instancesthkdatter.

Table 1. Queries.

Group Label Tree Pattern Query
Group 1 LPE1 //issue//author/first
(LPEs) LPE2 //issue//article//author/first
LPE3 //movie//actor/ /first
LPE4 //movie/cast//actor/ /first
Group 2 BPE1 //issuel//keyword]//author[/last]/first
(BPEs without BPE2 | //issue[//keyword]//article[/summary]//author[/last]/first
selection BPE3 | //movie[/director]//actor[/award]//first
conditions) BPE4 //movie[/director]/cast[/actress]//actor[/award]/ /first
Group 3 BPS1 //issue[//keyword=""XML"]//article[/summaryl]//author[/last]/first
(BPEs with BPS2 //issue[//keyword=""XML"]//article[/summary]//author[/last=""Smith"]/first
selection BPS3 | //movie[/director/last=""Mendes"]//actor[/award]/ /first
conditions) BPS4 | //movie[/director/last=""Mendes"]//actor[/award=""Oscar"]/ /first

Computing environment We have conducted the experiments using the Odysseus
object-relational database management systemSUN Ultra 60 workstation with
512 Mbyte RAM. In order to eliminate the unpredictable briffg effect in the op-
erating system, we have used a raw disk device to bypass thriffEs. We have also
flushed the DBMS buffer after each query execution so thattkeution does not affect
later ones. The cost metrics used are the elapsed time andittiger of disk 1/0’s.

6.2 Experimental results

Since the crawlers collearbitrary documents from the Internet, new label paths are
added as new documents are added by crawling. We have extthet number of dis-
tinct label paths from the XML documents collected. We cexhd total of 170009 XML
documents extracting 79943 distinct label paths.

Figure 8 shows the costs of the query LPE4 in Table 1 for theethmethods as the
number of distinct label paths increases. Figures 9 and @@ shose for BPE2 and
BPS1 in Table 1. The buffer size has been set to 200 4Kbytegtageliminate extra
disk I/0’s caused by an insufficient buffer size. Due to sgani, we omit the figures
of the other queries; their costs show similar trends wiglidgl curves.

& Odysseus has been developed at the KAIST Advanced Infaymatichnology Research Cen-
ter, and provides the key operations needed by a text seagitee
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Fig. 9. Query costs of XRel, XParent, XIR for BPE2 (buffer size = 2@@es).
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Fig. 10.Query costs of XRel, XParent, XIR for BPS1 (buffer size = 20@¢s).

In Figures 8 through 10, we see that XIR is more efficient thath XRel and
Xparent. The performance gap varies from several orders of magaituthe case of
LPEs to several factors in the case of BPEs. In particularcthsts of LPEs increase
nearly linearly for XRel and XParent while sublinearly — rgaconstant — for XIR.
This amounts to the difference between the string matchmretted index search for
finding matching label paths. In the case of BPEs, the costsase linearly for all three
methods, but the slope is the smallest for XIR. This comaa #%éR’s join performance
advantage [25]. When comparing the BPEs without selectowlitions (Figure 9) and
those with selection conditions (Figure 10), we see thaigtyes among the costs of
the three methods are smaller for BREth selection conditions. The reason for this is
that XRel or XParent can take advantage of the B+-tree intkated on thé val ue’
column of the tabl@ext or Dat a.

" As mentioned in Section 3.2, we use the talsheest or to be able to support partial match
queries in XParent [14], [15]. This causes XParent to showrgrgperformance than XRel due
to the cardinality of thédncest or table that is heavily involved in joins. This is in contrast
with the results shown in the XParent papers [14], [15], whée performances of only full
match queries using the DataPath table were presented.
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7 Conclusions

We have proposed a novel approach called XIR to processitiglpaatch queries on
a large number of heterogeneous XML documents typical inrtenet environment.
For this purpose, we have presented two key techniqueselfirgt technique, we treat
the label paths occurring in XML documents as texts and eraatinverted index on
them. This inverted index supports much faster partial mdian XRel's or XParent’s
string match when evaluating a linear path expression. énsétcond technique, we
use prefix match joins to evaluate a branching path expmesaidranching path ex-
pression is decomposed into linear path expressions, ameshlts of evaluating each
linear path expression are combined using the prefix joimdJhe prefix join signif-
icantly reduces the number of joins compared with the cantant join used in XRel
or XParent.

Through extensive experiments, we have compared the psafare of XIR with
those of XRel and XParent using real XML documents crawlechfthe Internet. The
results show that XIR is significantly more efficient than XBeXParent.
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