Available online at www.sciencedirect.com

d &< The Journal of
scIENcECDIREcT® systems and
Software

ELSEVIER The Journal of Systems and Software 79 (2006) 180-190

www.elsevier.com/locate/jss

Efficient evaluation of linear path expressions
on large-scale heterogeneous XML documents using
information retrieval techniques

Young-Ho Park **, Kyu-Young Whang ®, Byung Suk Lee °, Wook-Shin Han ©

& Department of Computer Science and Advanced Information Technology Research Center (AlITrc), Korea Advanced Institute
of Science and Technology (KAIST), 373-1, Koo-Sung Dong, Yoo-Sung Ku, Daejeon 305-701, Republic of Korea
° Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
¢ Department of Computer Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

Received 28 May 2004; received in revised form 9 May 2005; accepted 9 May 2005
Available online 5 July 2005

Abstract

We propose XIR-Linear, a method for efficiently evaluating linear path expressions (LPEs) on large-scale heterogeneous XML
documents using information retrieval (IR) techniques. LPEs are the primary form of XPath queries, and their evaluation tech-
niques have been researched actively. XPath queries in their general form are partial match queries, and these queries are particu-
larly useful for searching documents of heterogeneous schemas. Thus, XIR-Linear is geared for partial match queries expressed as
LPEs. XIR-Linear has its basis on existing methods using relational tables (e.g., XRel, XParent), and drastically improves their effi-
ciency using the inverted index technique. Specifically, it indexes the labels in label paths (i.e., sequences of node labels) like key-
words in texts, and finds the label paths matching the LPE far more efficiently than string match used in the existing methods.
We demonstrate the efficiency of XIR-Linear by comparing it with XRel and XParent using XML documents crawled from the
Internet. The results show that XIR-Linear outperforms XRel and XParent by an order of magnitude with the performance gap
widening as database size grows.
© 2005 Elsevier Inc. All rights reserved.

Keywords: XML; Inverted indexes; Partial match queries; Information retrieval

1. Introduction 2004). A novel method is needed for these applications,

and we address it in this paper.

Recently, there have been significant research on pro-
cessing queries against XML documents (XML, 2004).
To our knowledge, however, most of them considered
only a limited number of documents with a fixed sche-
ma, and thus, are not suitable for large-scale applica-
tions dealing with heterogeneous schemas—such as an
Internet search engine (Naughton et al., 2001; Xyleme,

* Corresponding author. Fax: +82 42 869 3510.
E-mail addresses: yhpark@mozart.kaist.ac.kr (Y.-H. Park),
kywhang@mozart.kaist.ac.kr (K.-Y. Whang), bslee@cs.uvm.edu
(B.S. Lee), wshan@knu.ac.kr (W.-S. Han) .

0164-1212/$ - see front matter © 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2005.05.009

Partial match queries in XPath (Clark and DeRose,
1999) can be particularly useful for searching XML doc-
uments when their schemas are heterogeneous while
only partial schema information is known to the user
(Aboulnaga et al., 2001; Petrou et al., 1999). Here, a
partial match query is defined as the one having the
descendent-or-self axis “//” in its path expression. A full
match query (Mandreoli et al., 2002) can be considered
a special case of a partial match query. For example, let
us consider XML documents on papers stored at the
four web sites in Fig. 1. We note that the schemas in
these web sites are heterogeneous. To find the names

mailto:yhpark@mozart.kaist.ac.kr
mailto:ky whang@mozart.kaist.ac.kr
mailto:bslee@cs.uvm.edu
mailto:wshan@knu.ac.kr

Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190 181

paper paper
autr|10rs affilii'Ltion
/ N\
author author author
nalme na|me nalme
firs/t \Iast
web site 1 web site 2

paper paper
author information
public_info author

/ \ |

name address name

web site 3 web site 4

Fig. 1. XML documents for publications in four web sites.

of authors in the heterogeneous XML documents, the user
should use the partial match query //author//name.

Partial match queries can be classified into linear path
expressions (LPEs) and branching path expressions
(BPEs). An LPE is defined as a path expression consist-
ing of a sequence of labels having a parent—child rela-
tionship or an ancestor-descendent relationship
between labels; a BPE is defined as a path expression
having branching conditions for one or more labels in
the LPE.! LPEs retrieve documents based on the path
information only, without any predicate-based selection
along the path, and is a primary query form used very
popularly in XML document search. Thus, we focus
on LPEs as the target query type in this paper. Our
objective in this paper is to propose an efficient method
to evaluate LPEs for partial match queries on large-scale
documents of heterogeneous schemas. Note that full
match queries can be regarded as a special form of par-
tial match queries.

Existing methods for providing partial match queries
can be classified into two types: schema-level methods
and instance-level methods. Examples of schema-level
methods are XRel (Yoshikawa et al., 2001), XParent
(Jiang et al., 2002a,b), and Index Fabric (Cooper
et al., 2001). Those of instance-level methods are Ele-
ment Numbering Scheme (Li and Moon, 2001), Multi-
Predicate Merge Join (Zhang et al., 2001), Structural
Join (Al-Khalifa et al., 2002), Holistic Twig Join (Bruno
et al., 2002) and its variants (Jiang et al., 2003a,b), XQu-
ery/IR (Bremer and Gertz, 2002), Keyword Search on
XML-QL (Florescu et al., 2000), XRANK (Guo et al.,
2003), and Mixed Mode (Halverson et al., 2003).
Among these methods, the ones of the first type are
usable for partial match queries, but they are not de-
signed for use in large-scale documents of heterogenecous
schemas (Yoshikawa et al., 2001; Jiang et al., 2002a,b)
or have only limited support for partial match queries
(Cooper et al., 2001). The ones of the second type can
support partial match queries, but can not be best used

! We define LPE more formally in Section 2.2.

in a large-scale database because of inefficiency. Between
these two classes of methods, the schema-level methods
are much more feasible than the instance-level methods
for large-scale XML documents because of their abilities
to “filter out” document instances at the schema-level.
We thus adopt the schema-level methods as the basis
of our method. More details on this will appear in
Section 3.

We particularly base our method on the schema-level
methods using relational tables, such as XRel (Yoshik-
awa et al., 2001) and XParent (Jiang et al., 2002a,b).
There are two reasons for this. First, those methods
can utilize well-established techniques on relational
DBMSs instead of a few native XML storages. Second,
those methods can also utilize SQLs to query XML doc-
uments. For the query processing, they store the schema
information and instance information of XML docu-
ments in relational tables, and process partial match
queries in two phases: first, find the XML documents
whose schemas match a query’s path expression, and
second, among the documents, find those that belong
to the path expression.

However, query processing efficiencies of the two
existing methods, XRel and XParent, are too limited
for large-scale applications, as we will show in our
experiments in Section 6. The main hurdle in existing
methods is the large amount of schema information.
The goal of our method (we name it XIR-Linear) is to
improve the efficiency in such an environment. Specifi-
cally, we present a method that adopts the inverted
index (Salton and McGill, 1983) technique, used tradi-
tionally in the information retrieval (IR) field, for
searching a very large amount of schema information.
IR techniques have been successfully used for searching
large-scale documents with only a few keywords (consti-
tuting partial schema information). If we treat the sche-
ma of an XML document as a text document and
convert partial match queries to keyword-based text
search queries, we can effectively search against hetero-
geneous XML documents using partial match queries.

In this paper, we first describe the relational table
structures for storing the XML document schema and
instance information, and then, describe the structure

182 Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190

of the inverted index. We then present the algorithms for
processing queries. For this purpose, we present the
rules for mapping an LPE to a search expression on
the inverted index and present an algorithm for finding
the nodes matching the LPE. Then, we discuss the per-
formance of XIR-Linear in comparison with those of
XRel and XParent, and verify our comparison through
experiments using real XML document sets collected by
crawlers from the Internet. The results show that XIR-
Linear outperforms both XRel and XParent by several
orders of magnitude for LPEs.

The rest of the paper is organized as follows. Section
2 introduces the XML document model and query
model supported in our XIR-Linear method. Section 3
discusses existing XPath query processing methods.
Section 4 presents the storage structures used in XIR-
Linear, and Section 5 presents the query processing
algorithm based on these structures. Section 6 presents
the performance evaluation of XIR-Linear compared
with XRel and XParent. Section 7 concludes the paper.

2. Preliminaries
2.1. XML document model

Our XML document model is based on the one pro-
posed by Bruno et al. (Bruno et al., 2002). In this model,
an XML document is represented as a rooted, ordered,
labeled tree. A node in the tree represents an element, an
attribute, or a value; an edge in the tree represents an
element-subelement relationship, element-attribute
relationship, element—value relationship, or attribute—
value relationship. Element and attribute nodes
collectively define the document structure, and we assign
labels (i.e., names) and unique identifiers to them.

1ssue

Fig. 2 shows an example XML tree of a document. In
this figure, all leaf nodes except those numbered 15 and
27 (representing the two attribute values “R” and “7T7’)
represent values, and all non-leaf nodes except those
numbered 14 and 26 (representing the attribute @cate-
gory) represent elements. Note that attributes are dis-
tinguished from elements using a prefix ‘@’ in the labels.

In principal, an element can have a single attribute of
type ID whose value is a unique identifier that can be
referenced by attributes of type IDREF or IDREFS of
other elements, constructing a graph structure. How-
ever, our work does not take into account for the cyclic
references, assuming a tree model as in existing methods
(Li and Moon, 2001; Jiang et al., 2003a,b). We leave the
cyclic reference problem in query processing as a future
work because it can be considered as a separate impor-
tant research issue.

We modify this model so that a node represents either
an element (element node) or an attribute (attribute
node) but not a value. We also modify the model with
the notion of label paths as defined in Definition 1.

Definition 1. A label path in an XML tree is defined as
a sequence of node labels /i,5,...,1, (p = 1) from the
root to a node p in the tree, and is denoted as /,.5.....1,.

We say a label path matches a partial match query.
For example, in Fig. 2, issue.editor.first is a
label path matching a path expression //editor//
first. Note that there may be multiple nodes belong-
ing to the same label path.

There are other definitions of the label path, such as
those in DataGuides (Goldman and Widom, 1997) or
XParent (Jiang et al., 2002a). DataGuides defines the
path as a sequence of nodes from an internal node,
which is not necessarily the root, to a leaf node; XParent
defines the path as a sequence of edges instead of nodes.

T

edltor 7 editor

/ N\ / N\

3
first 51ast 8ﬁrst 10 last

| | | 13 article
4 6 9
“*Michael”” “*Franklin” **Jane”

@category tltle author
sl W

“R” XML schema” first

20 l 22 |
“*David”**Curry”

// AN

12 articles

/

/ZSarticle
28 / 30 35
keyword @category title author keyword
z4| 271 z9| a1 /N 36|
S XML T “~OODB” " first last “DB”
32 l 34 |
“John” >*Smith”

Fig. 2. An example XML tree of a document.

Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190 183

2.2. XML query model

Our query language belongs to the tree pattern query
(TPQ) class (Amer-Yabhia et al., 2001; Ramanan, 2003).
The query language supports two kinds of path expres-
sions: (1) linear path expressions (LPEs) and (2) branch-
ing path expressions (BPEs). Among them, we define
the LPE, the query type of our focus in this paper, as a se-
quence of labels connected with ¢/’ or *//” as in Definition 2.

Definition 2. A linear path expression (LPE) is defined
as lyoili0ob---0,l,, where [; (i=0,1,...,n) is the i-th
label in the path, and o; (j = 1,2,...,n) is either /" or °//°
which, respectively, denotes a parent—child relationship
or an ancestor—descendant relationship between /;,_; and
l;. Here, [y is the root of the XML tree denoting the set of
all XML documents and may be omitted.

For example, the LPE /issue//article/title
is for retrieving all title elements that are children
of the article elements that are descendants of the
issue elements.

3. Related Work

As mentioned in Introduction, there are two kinds of
methods for evaluating path expressions: schema-
level methods and instance-level methods. A schema-
level method uses structural information like the label
paths to find nodes matching a path expression (Jiang
et al., 2002a,b; Yoshikawa et al., 2001; Cooper et al.,
2001), whereas an instance-level method uses only node
identification information like the start and end positions
of a node (Al-Khalifa et al., 2002; Bruno et al., 2002;
Jiang et al., 2003a,b). In this section, we briefly discuss in-
stance-level methods, and then, focus on schema-level
methods.

3.1. Instance-level methods

There have been three different approaches for the in-
stance-level method. The first uses XML tree navigation
(Altinel and and Franklin, 2000; Ives et al., 2000;
McHugh and Widom, 1999). It converts a path expres-
sion to a “state machine”,” and then evaluates the path
expression by navigating the XML tree guided by the
state machine. The second uses node instance informa-
tion stored for each node in an XML tree (Al-Khalifa
et al., 2002; Bruno et al., 2002; Jiang et al., 2003a,b; Li
and Moon, 2001; Tatarinov et al., 2002; Zhang et al.,
2001). It converts a path expression to a (structural) join
query, and then evaluates the join query using the node
instance information. The third uses information retrie-

2 A representation of the sequence of labels in the path expression as
a sequence of states in finite state automata.

val (IR) technique, particularly an inverted index cre-
ated on XML documents (Bremer and Gertz, 2002;
Florescu et al., 2000; Guo et al., 2003; Halverson
et al., 2003). In the remainder of this subsection, we fur-
ther discuss the second and the third approaches as they
are far more efficient than the first one (which requires
navigating the XML tree).

Existing methods of the second approach include
Multi-Predicate Merge Join (Zhang et al., 2001), Struc-
tural Join (Al-Khalifa et al., 2002), and Holistic Twig
Join (Bruno et al., 2002) and its variants (Jiang et al.,
2003a,b). These methods have the advantage that partial
match queries can be processed with only instance-level
information. However, query evaluation involves com-
paring the node instance information, and therefore,
tends to be more expensive than in the schema-level
methods, which can filter out node instances signifi-
cantly by using the schema information.

Existing methods of the third approach include
XQuery/IR (Bremer and Gertz, 2002), Keyword Search
on XML-QL (Florescu et al., 2000), XRANK (Guo
et al., 2003), and Mixed Mode (Halverson et al.,
2003). Inverted indexes are created on instance-level
information, i.e., on the values in the XML document
in XQuery/IR (Bremer and Gertz, 2002) and XRANK
(Guo et al., 2003) and on the nodes (i.e., elements, attri-
butes) as well as values in Keyword Search on XML-QL
(Florescu et al., 2000) and Mixed Mode (Halverson
et al.,, 2003). We note that, although using inverted
indexes, they are fundamentally different from XIR,
which creates an inverted index on the label paths,
which are schema-level information.

3.2. Schema-level methods

Schema-level methods are categorized into those using
special purpose indexes (Cooper et al., 2001; Goldman
and Widom, 1997) and those using relational tables (Y os-
hikawa et al., 2001; Jiang et al., 2002a,b) depending on
where and how label paths are stored. In the former case,
label paths are stored dynamically as they are used in the
queries. In the latter case, all label paths in the documents
are stored in the tables of a relational DBMS a priori.

Index Fabric (Cooper et al., 2001) is considered the
representative method in the schema-level methods using
special purpose indexes. Index Fabric uses the Patricia
trie to index the label paths and values that have oc-
curred in the queries occurring frequently. However, In-
dex Fabric is not meant to support partial match queries,
which are very effective for searching in a heterogeneous
environment. This is a critical drawback that render the
method inapplicable in a large-scale, heterogeneous envi-
ronment. Thus, in this section, we primarily focus on the
schema-level methods using relational tables.

XRel (Yoshikawa et al., 2001) and XParent (Jiang
et al., 2002a,b), which are the two representative ones

184 Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190

among the schema-level methods using relational tables,
provide a basis for our XIR method. We describe each
method in this subsection. We use the term node inter-
changeably with element or attribute as these are repre-
sented as nodes in the XML document model and the
query pattern.

3.2.1. XRel
In XRel, the XML tree structure information is
stored in the following four tables:

Path (label path id, label path)

Element (document_id, label path id,
start_position, end position, sibling
order)

Text (document_id, label path id, start_
position, end position, value)

Attribute (document_id, label path id,
start_position, end_position, value)

The table Path stores all label paths in the XML
documents and their identifiers. The table Element
stores information about the element nodes, where the
information about each node consists of the identifier
of the document containing the node, the identifier of
the label path ending at the node, the offsets of the start
and end positions of the node within the document, and
the order of the node among its siblings. The combina-
tion of start position and end position is used to identify
a node in place of a node identifier. The table Text
stores information about the values of element nodes,
where the column value stores the text value. The table
Attribute is identical to the table Text except that
the column value stores the values of attributes value
instead of elements. These two tables can be stored
physically as one table.

In order to evaluate LPEs, XRel needs only the tables
Path and Element. It first finds the label paths match-
ing the query’s path expression from the Path table.
The matching is done using the SQL string match oper-
ator LIKE. All label paths in the Path table must be
scanned in this case because an index like the B+-tree
cannot be used to search for a partially matching label
path. Then, XRel joins the set of matching label paths
with the table Element via the column label
path_id to obtain the result nodes. Fig. 3 shows the
SQL statement generated for evaluating the LPE //
article//author/first. In the LIKE phrase, the
symbol ‘#’ is a label delimiter, and the symbol %’ is a
wildcard matching one or more characters. The table
Text and Attribute can be subsequently used to re-
trieve the values of the selected nodes if needed.

3.2.2. XParent
XParent (Jiang et al., 2002a,b) is similar to XRel, but
uses a slightly different table schema for a different node

SELECT distinct e1l.document_id, el.start_position, e1.end_position
FROM Path p1, Element el

WHERE pl.label_path LIKE * *#%/article#%/ author#/first#”’

AND el.label_path_id = p1.label_path_id;

Fig. 3. XRel SQL statement for the partial match query //arti-
cle//author/first.

SELECT distinct e1.document_id, el.node_id

FROM LabelPath Ip1, Element el

WHERE el.label_path_id = Ip1.label_path_id

AND Ip1.label_path LIKE " *.%/article.%/author. /first.”;

Fig. 4. XParent SQL statement for the partial match query //
article//author/first.

identification mechanism, 1i.e., the node identifier
(node_id) instead of the interval (start_position,
end_position).

LabelPath (label path id, length, label_
path)

Element (document_id,
node_id, sibling order)
Data (document_id, label path id, node_
id, sibling order, value)

DataPath (parent_node_id, child node_id)
Ancestor (node_id, ancestor node_id,
offset_to_ancestor)

label path id,

The table LabelPath is equivalent to the table
Path in XRel. The table Element stores information
about the element nodes and attribute nodes and, thus,
is equivalent to the union of the table Element and the
table Attribute (without the column value) in
XRel. The table Data stores information about element
values and, thus, is equivalent to the table Text in
XRel. The table DataPath (a.k.a. Parent table) keeps
parent—child relationship between nodes. Alternatively,
the table Ancestor may be used to keep ancestor—
descendent relationship between nodes.

In query processing, XParent evaluates an LPE in the
same way as XRel, using the tables Labelpath and
Element. Fig. 4 shows the SQL statement for the
LPE //article//author/first. The SQL state-
ment is very similar to that in XRel except using
node_id instead of start position and end_po-
sition (and using ‘.’ instead of ‘#’ in the LIKE
phrase). The table Data can be subsequently used to
retrieve the values of the selected nodes if needed.?

4. XIR-Linear storage structures

XIR-Linear uses three tables and an inverted index to
store information about XML document structure:

3 The tables DataPath and Ancestor are used for BPE’s, which
are not discussed in this paper.

Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190 185

LabelPath (label path_id, label _path)
Element (document_id, label path id,
node_id, sibling order)

Data (document_id, label path id, node_
id, sibling order, value)

Inverted index on label path of the table
LabelPath.

Fig. 5 shows the LabelPath table and the inverted
index for the example XML tree in Fig. 2. The table
LabelPath represents the schema-level information
and stores all the distinct label paths occurring in
XML documents and their path identifiers (label
path _pid). We add the labels prefixed with ‘$’ and
‘& to denote the first label and the last label of each
label path. The first label is to match the root label of

the document, and the last label is to match the last label
in a partial match query. The details on their use in
query processing will appear in Section 5.

The LabelPath inverted index is created on the
label path column of the LabelPath table. Here,
we consider label paths as text documents and labels
in these label paths as keywords. Like the traditional in-
verted index (Salton and McGill, 1983), the Label-
Path inverted index is made of the pairs of a keyword
(i.e., a label) and a posting list. Each posting in a posting
list has the following fields: 1abel path id, occur-
rence_count, offsets, 1label path length,
where label path_id is the identifier of the label
path in which the label occurs, occurrence_count
is the number of occurrences of the label within the label
path, offsets is the set of the positions of the label

label_p label_path keyword posting list
ath_id $issue (<1, 1,411 3> <2,1,{14 4> <3,1,{1}, 5> ..
- - - issue 1 <1,1,42}, 3> <2,1,42}, 4> <3,1,42}, 5> ...
1 $ISSU€.ISSLI€.&ISSLI€ &issue s < ,], {3}, 3>
2 $issue.issue.editor.&editor article 1 <6,1,{4}, 5> <7,1,{4},6> <8, 1,{4},6> ...
- - - &article 1 <6, 1,{5}, 5>
3 $issue.issue.editor.first.&first articles 1 <5,1,{3}, 4> <6,1,{3}, 5> <7,1,{3}, 6> ...
p - r editor last.&last Qarticles : <5, 1, {4}, 4>
$issue.issue.editor.last 3las editor 1<2,1,{3}, 4> <3,1,{3}, 5> <4,1,{3}, 5>
5 $issue.issue.articles.&articles &editor 1 <2,1,1{4}, 4>
- - - - - author 1 <9,1,{5}, 6> <10,1,{5}, 7> <11,1,{5}, 7>
6 $issue.issue.articles.article.&article &author <9, 1, {6}, 6>
7 $issue.issue.articles.article.@category.&@category first 1<3,1,1{4}, 5> <10,1,{6}, 7>
&first 1<10, 1,47}, 7>
8 $issue.issue.articles.article.title.&title last 1 <4,1,{4}, 5> <11,1,{6}, 7>
- - " - &last <11, 1,47}, 7>
9 $issue.issue.articles.article.author.&author title :<8,1,{5} 6>
10 $issue.issue.articles.article.author.first.&first &title : <8, 1,1{6}, 6>
- - - - keyword 1 <12, 1, {5}, 6>
11 $issue.issue.articles.article.author.last.&last &keyword : <12, 1,16}, 6>
- - " - @category :<7,1,{5}, 6>
12 $issue.issue.articles.article.keyword.&keyword &@category : <7, 1.{6}, 6>
a b
Fig. 5. An example (a) LabelPath table and (b) inverted index.
docum | label_p | node | sibling_ docum Iati]el‘_ node | sibling_ value
ent_id ath_id _id order ent_id atl _lé) -id order
1 1 1 1 1 3 4 1 Michael
1 2 2 1 1 4 6 1 Flanklin
1 3 3 1 1 3 9 1 Jane
1 4 5 2 1 4 11 1 Poe
1 2 7 2 1 7 15 1 R
1 3 8 1 1 8 17 1 XML schema
1 4 10 2 1 10 20 1 David
1 5 12 3 1 11 22 1 Curry
1 6 13 1 1 12 24 1 XML
1 7 14 1 1 7 27 1 T
1 8 16 2 1 8 29 1 O0DB
1 9 18 3 1 10 32 1 John
1 11 34 1 Smith
1 12 35 4 1 12 36 1 DB
a b

Fig. 6. An example (a) Element table and (b) Data table for the XML document of Fig. 2.

186 Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190

Algorithm XIR_Linear_LPE_evaluation

Input: LPE P, LabelPath inverted index, Element table
Output: set of nodes obtained from the LPE

begin

1. Convert the input LPE Pto an IR expression £using the syntactic

mapping rule LPE-to-IRExp (Rule 1).

2. Find the set of label_path_ids (pidSet) using the LabelPath inverted index

given the IR expression £

3. Find the set of nodes(Nset) through an equi-join between

pidSet and the Element table.
4. Return Nset.

Fig. 7. XIR-Linear LPE evaluation algorithm.

from the beginning of the label path, and label
path_length is the number of labels in the label path.
For instance, in the posting of the label section in a
label path $chapter.chapter.section.section.
section.paragraph.¶graph, the occurr-
ence_count of sectionis 3, the offsets of sec-
tionis {3, 4, 5}, and the 1abel path lengthis7.

The tables Element and Data represent the in-
stance-level information and are identical to those of
XParent. They are used to identify the nodes in the
XML documents that belong to the label path selected
from LabelPath table representing the schema-level
information.* Fig. 6 shows an example of the Element
table and Data table for the XML tree in Fig. 2.

5. XIR-Linear query processing algorithms

Fig. 7 shows the algorithm for evaluating an LPE
based on the XIR-Linear storage structures described
in Section 4. It first finds matching label paths in the
LabelPath table using the LabelPath inverted
index, and then, performs an equi-join between the set
of the label paths found and the Element table via
the column label path id. It then returns the
matching nodes as the query result. The table Data
can be subsequently used to retrieve the values of the
selected nodes if needed.

Formally, an LPE is evaluated as

Hnude_id (O MATCH (label _path,LPE)
Label Path><upei_path_id—1abel_parn_iaE lement) (1)

Since the selection 6 yr47cu(aer parn,1.peyLabelPath is
implemented as a text search on the label path
column, XIR-Linear should first convert an LPE to a

4 These two tables of XParent correspond to three tables Element,
Text, and Attribute of XRel. We prefer those of XParent due to
the join efficiency for BPE (Jiang et al.,, 2002a,b) of using node
identifiers (node_id) over using start_position and end_position in
XRel.

keyword-based text search condition (we call it informa-
tion retrieval expression (IRExp)). The following rule
specifies how the conversion is done.

Rule 1. [LPE-to-IRExp] An LPE 0,/ 055 - -0,l,, where
o, e {/",//'} for i=1,2,...,p, is mapped to an IRExp
using the following rule:

0111:»{1' o=/
81y near(1) Iy if oy =*/
l; near(oco)l;, if o =°//)
lioi1li = {l,- near(l) /. if oy ="/
for i=1,2,...,p—1

1, = Inear(1)&l,

where near(w) is the proximity operator, which retrieves
the documents in which the two operand keywords ap-
pear within w words apart.

Note that /; and /, are respectively the root (i.e., first)
node and the leaf (i.e., last) node of the LPE. For exam-
ple, an LPE /issue/articles//author is con-
verted to an IRExp &issue near(l) issue
near(l) articles near(oo) author near(l) &
author. Note $issue indicates that i ssue is the root
of the XML tree of the document.

Example 1. Consider the LPE //article//
author/first. Using the rule LPE-to-IRExp, XIR-
Linear converts this LPE to the IRExp article
near(oco) author near(l) first near(l)
&first. Then, searching the LabelPath inverted
index in Fig. 5(b) returns the pidSet {10}, and joining
this set with the Element table returns the set of nodes
{19, 31}. Fig. 8 shows the SQL statement generated for
evaluating the LPE. The MATCH in the WHERE clause

SELECT DISTINCT el.document_id, el.node_id

FROM LabelPath p1, Element el

WHERE pl.pid = el.pid

AND MATCH(p1.label_path, "article’ NEAR(MAXINT) "author"
NEAR(1) “first’ NEAR(1) " &first");

Fig. 8. XIR-Linear SQL statement for the LPE //article/
author/first.

Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190 187

Performance-related XRel XParent XIR-Linear
features
label path match method string match string match inverted index search

element identification interval node id method used in XRel or
method XParent

factors affecting label path | the number of label | the number of label the sum of the lengths of the
match time paths in Path table paths in LabelPath table | posting lists for the labels in

the LPE

Fig. 9. Comparison of XRel, XParent, and XIR-Linear.

makes use of the LabelPath inverted index. The
symbol MAXINT is a system-defined maximum integer.

The query processing algorithms of XRel, XParent,
and XIR-Linear share the same outline, but have quite
different implementations leading to their performance
differences. Fig. 9 shows a summary of comparing the
three methods. XIR-Linear’s performance advantage
over XRel and XParent comes from using inverted index
search instead of string match for finding label paths
matching the LPE. For XRel or XParent, the label
path match time is proportional to the number of label
paths stored in the Path or LabelPath table. In con-
trast, for XIR-Linear, the time is determined by the
number of labels in the LPE and the lengths of the post-
ing lists associated with these labels in the index. The
length of the posting list for each label is proportional
to the number of label paths containing the label. This
number is only a small portion of the total number of
label paths stored in the table LabelPath. Thus, the
label path match time is expected to be far shorter for
XIR-Linear.

6. Performance evaluation

In this section we compare the performance of XIR-
Linear with those of XRel and XParent, with particular
attention to the efficiency of query processing.

6.1. Experimental setup

6.1.1. Databases

We have collected 10008 XML documents from the
Internet using two web crawlers: Teleport Pro Version
1.29.1959 (Teleport, 2004) and ReGet Deluxe 3.3 Beta
(build 173) (ReGet, 2004). Note that we have not used
a synthetic data set because these data are confined with-
in a particular domain and, consequently, do not have
sufficiently heterogeneous structures.

Using the collected XML documents, we have con-
structed five sets of data files of different sizes. Each set
contains approximately 5000, 10,000, 20,000, 40,000,
and 80,000 distinct label paths. The last set has
1,460,000 nodes. A larger set contains all label paths in
a smaller set, i.e., is a superset of smaller sets. Each set

has been loaded into three databases, each containing
tables used by XRel, XParent, and XIR-Linear methods.
The total number of databases thus generated is 15.

For XRel and XParent, we have used the database
schema and indexes as they were used in the original de-
signs (Jiang et al., 2002a,b). For XIR-Linear, we have
loaded the data files into the LabelPath, Element,
and Data tables, created B+-tree indexes on the col-
umns document_id and label path_id of each
table as in XRel or XParent, and created an inverted in-
dex on the label path column of the Labelpath
table.

6.1.2. Queries

Table 1 shows two groups organized as sets of XPath
LPE queries: one is on issue documents; the other
is on movie documents. The former has far more

Table 1
Queries
Group Label XPath query Selectivity
Group 1 LPEl /issue/editor 1077-107°
(LPEs on LPE2 //issue//first 10741073
issue LPE3 //issue//author/first 107°-107*
documents) LPE4 //issue//article//author/first 107°-107*
Group 2 LPE5 /movie/cast 1077-107°
(LPEs on LPE6 //movie//first 107%-107°
movie LPE7 //movie//actor//first 1071073
documents) LPE8 //movie/cast//actor//first 107%-107
90000
80000 ;
€ 70000
L=
.‘é = 60000 |
S B 50000
© —
5 g 40000
-g = 30000
S
3 20000
10000
0
0 2000 4000 6000 8000 10000

Number of XML document

Fig. 10. The number of distinct label paths as the number of XML
documents increases.

188 Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190

in Table 1 is the ratio between the number of nodes
resulting from the LPE and the total number of nodes

document instances than the latter. LPEs within each
group have different numbers of labels and/or different

combinations of °/* and ‘//. The selectivity field

Fig. 11. Query costs of XRel, XParent, XIR-Linear (buffer size =200 pages). (a) LPEl (Group 1); (b) LPE3 (Group 1); (c) LPE6 (Group 2);

LPE1 - Elapsed time
—&— XIR-Linear —@— XParent —&— XRel

in the database.

LPE1 — Number of disk I/O's
—o— XI|R-Linear —@— XParent —&— XRel

3500 2500
o 3000 A % 2000 A
,g 2500 o
g‘,‘,," 2000 ‘6 w 1800
S
2 E 1500 g 2 1000
& 1000 £ <00
w S
500
0 e o s —— = 0 '-‘g/‘ * *
0 20000 40000 60000 80000 100000 9 20000: 20000 60006: BOCOO 100000
Number of distinct label paths Number of distinct label paths
a
LPE3 - Elapsed time LPE3 — Number of disk I/0O's
—4—XIR-Linear —@—XParent —&— XRel —+— XIR-Linear —@—XParent —&— XRel
4000 2500
° 3500 ﬁ
£ 3000 £ 2000
S~ 2500 u=
) o 1500
2 E 2000 5 o
2 = 1500 8 2 1000
S 1000 E
500 S ———— =z 500
0 0 A__’————’-—'—-__-_-_.
0 20000 4000_0) 60000 B0O0OO 100000 0 20000 40000 60000 80000 100000
Number of distinct label paths Number of distinct label paths
b
LPE6 — Elapsed time LPE6 — Number of disk I/O's
—e—X|R-Linear —@— XParent —&— XRel —&o— XI|R-Linear —— XParent —&— XRel
4000 2500
" 3500 ’u‘_: #0000
g so0 5
S 2500 s , 1500
T @ 2000 =
(7]
fg’_ E 500 g 9 1000
& 1000
w 500 é’ 500 "ﬂ/
o He-o— 4 * o He—e g <
0 20000 40000 60000 &0000 100000 0 20000 40000 60000 80000 100000
Number of distinct label paths Number of distinct label paths
c
LPES - Elapsed time LPES8 — Number of disk I/0's
—4— XIR-Linear —@— XParent —&— XRel —— XIR-Linear —@— XParent —&— XRel
4000 2500
3500 A}
2 3000 S % 2000
= ©
S 2500 w1500
2 E 2000 °
0 ~— 1500 & = 1000
& 1000 'E
w 500 E 500
N 4
0 o] *— + +
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Number of distinct label paths Number of distinct label paths
d

(d) LPE8 (Group 2).

Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190 189

6.1.3. Computing environment

We have conducted the experiments using the Odys-
seus object-relational database management system’
(Odysseus, 2004), which provides operations needed by
a text search engine, on SUN Ultra 60 workstation with
512 Mbyte RAM. In order to eliminate the unpredict-
able buffering effect in the operating system, we have
used a raw disk device to bypass the OS buffer. Addi-
tionally, we have flushed the DBMS bulffer after each
query execution so that the execution does not affect
later ones. The cost metrics used are the elapsed time
and the number of disk I/O’s.

6.2. Experimental results

Since the crawlers collect arbitrary documents from
the Internet, new label paths are added as new docu-
ments are added by crawling. We have extracted the
number of distinct label paths from the XML docu-
ments collected. Fig. 10 shows the result. The database
size is 301 Mbytes for XIR-Linear, 271 Mbytes for
XRel, and 248 Mbytes for XParent when the number
of XML documents is 10,000 (and the number of dis-
tinct label paths is 80,000). The database size for XIR-
Linear is slightly larger due to inclusion of the inverted
index.

Fig. 11 shows the results for some of the LPEs in
Table 1. Results from the other LPEs show the same
trend. We see that, for the database used, XIR-Linear
is more efficient than both XRel and Xparent by a factor
of 3 to 30 in elapsed time and by a factor of 3 to 74 in the
number of disk I/O’s. Note that the performance gap
widens as the database size grows since the costs increase
linearly for XRel and XParent while sublinearly—almost
constant—for XIR-Linear. This confirms the significant
performance advantage of XIR-Linear in a large-scale
database environment.

7. Conclusions

We have proposed a novel approach, called XIR-
Linear, for evaluating linear path expressions on a large
number of heterogencous XML documents. In this ap-
proach, the label paths occurring in XML documents
are treated as texts, and an inverted index is created
on them. This inverted index supports much faster par-
tial match than XRel’s or XParent’s string match when
evaluating a linear path expression.

We have presented the storage structures of XIR-
Linear, including the inverted index as well as the tables

> Developed at the Advanced Information Technology Research
Center of KAIST.

storing all the label paths and nodes of the XML docu-
ments. Based on these structures, we have presented the
query processing algorithm for a linear path expression.
Then, we have compared the performance of XIR-
Linear with those of XRel and XParent through exper-
iments using real XML documents collected from the
Internet. The results show that XIR-Linear outperforms
both XRel and XParent by an order of magnitude with
the performance gap widening as the database size
grows.

As a future work, we are currently developing tech-
niques for extending our work to evaluation of branch-
ing path expressions (BPEs) for more complex partial
match queries.

References

Aboulnaga, A., Alameldeen, A., Naughton, J., 2001. Estimating the
selectivity of XML path expressions for internet scale applications.
In: Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB). pp. 591-600.

Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, J., 2002. Structural
joins: a primitive for efficient XML query pattern matching. In:
Proceedings of the 18th International Conference on Data Engi-
neering (ICDE). pp. 141-152.

Altinel, M., Franklin, M., 2000. Efficient filtering of XML documents
for selective dissemination of information. In: Proceedings of the
26th International Conference on Very Large Data Bases (VLDB).
pp. 53-64.

Amer-Yahia, S., Cho, S., Lakshmanan, L., Srivastava, D., 2001.
Minimization of tree pattern queries. In: Proceedings of the 2001
ACM SIGMOD International Conference on Management of
Data. pp. 497-508.

Bremer, J., Gertz, M., 2002. XQuery/IR: integrating XML document
and data retrieval. In: Proceedings of the fifth International
Workshop on the Web and Databases (WebDB 2002). pp. 1-6.

Bruno, N., Koudas, N., Srivastava, D., 2002. Holistic twig joins:
optimal XML pattern matching. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data.
pp- 310-321.

Clark, J., DeRose, S., 1999. XML Path Language (XPath), W3C
Recommendation. Available from http://www.w3.org/TR/xpath.

Cooper, B., Sample, N., Franklin, M., Hjaltason, G., Shadmon, M.,
2001. A fast index for semistructured data. In: Proceedings of the
27th International Conference on Very Large Data Bases (VLDB).
pp. 341-350.

Florescu, D., Kossmann, D., Manolescu, 1., 2000. Integrating keyword
search into XML query processing. In: Proceedings of the 9th
WWW Conference/Computer Networks. pp. 119-135.

Goldman, R., Widom, J., 1997. DataGuides: enabling query formu-
lation and optimization in semistructured databases. In: Proceed-
ings of the 23rd International Conference on Very Large Data
Bases (VLDB). pp. 436-445.

Guo, L., Shao, F., Botev, C., Shanmugasundaram, J., 2003. XRANK:
ranked keyword search over XML documents. In: Proceedings of
the 2003 ACM SIGMOD International Conference on Manage-
ment of Data. pp. 16-27.

Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R.,
Rao, A., Tian, F., Viglas, S., Wang, Y., Naughton, J., DeWitt, D.,
2003. Mixed mode XML query processing. In: Proceedings of the
29th International Conference on Very Large Data Bases (VLDB).
pp. 225-236.

http://www.w3.org/TR/xpath

190 Y.-H. Park et al. | The Journal of Systems and Software 79 (2006) 180-190

Ives, Z., Levy, A., Weld, D., 2000. Efficient evaluation of regular path
expressions on streaming XML data. Technical Report UW-CSE-
2000-05-02, University of Washington.

Jiang, H., Lu, H., Wang, W., Yu, J., 2002a. Path materialization
revisited: an efficient storage model for XML data. In: Proceedings
of the 13th Australasian Database Conference (ADC). pp. 85-94.

Jiang, H., Lu, H., Wang, W., Yu, J., 2002b. XParent: an efficient
RDBMS-based XML database system. In: Proceedings of the 18th
International Conference on Data Engineering (ICDE). pp. 335-
336.

Jiang, H., Lu, H., Wang, W., Ooi, B., 2003a. XR-Tree: indexing XML
data for efficient structural joins. In: Proceedings of the 19th
International Conference on Data Engineering (ICDE). pp. 253—
264.

Jiang, H., Wang, W., Lu, H., Yu, J., 2003b. Holistic twig joins on
indexed XML documents. In: Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB). pp. 273-284.

Li, Q., Moon, B., 2001. Indexing and querying XML data for regular
path expressions. In: Proceedings of the 27th International Con-
ference on Very Large Data Bases (VLDB). pp. 361-370.

Mandreoli, F., Martoglia, R., Tiberio, P., 2002. Searching similar
(sub)sentences for example-based machine translation. In: Pro-
ceedings of SEBD’02.

McHugh, J., Widom, J., 1999. Query optimization for XML. In:
Proceedings of the 25th International Conference on Very Large
Data Bases (VLDB). pp. 315-326.

Naughton, J. et al., 2001. The Niagara internet query system. IEEE
Data Engineering Bulletin 24 (2), 27-33.

Odysseus, 2004. Odysseus Object-Relational Database Management
System. Available from: http://aitrc.kaist.ac.kr/english/index.html.

Petrou, C., Hadjiefthymiades, S., Martakos, D., 1999. An XML-based,
3-tier scheme for integrating heterogeneous information sources to
the WWW. In: Proceedings of the 10th International Workshop on
Database and Expert Systems Applications, pp. 706-710.

Ramanan, P., 2003. Covering indexes for XML queries: bisimulation—
simulation = negation. In: Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB). pp. 165-176.

ReGet, 2004. ReGet Deluxe 3.3 Beta (build 173). Available from:
http://deluxe.reget.com/en/.

Salton, G., McGill, M., 1983. Introduction to modern information
retrieval. McGraw-Hill, New York.

Tatarinov, 1., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita,
E., Zhang, C., 2002. Storing and querying ordered XML using a
relational database system. In: Proceedings of 2002 ACM SIG-
MOD International Conference on Management of Data. pp. 204—
215.

Teleport, 2004. Teleport Pro Version 1.29, http://www.tenmax.com/
teleport/pro/home.htm.

XML, 2004. eXtensible Markup Language (XML). Available from:
http://www.w3.org/XML/.

Xyleme, 2004. Xyleme. Available from: http://www.xyleme.com/en/.

Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S., 2001. XRel: a
path-based approach to storage and retrieval of XML documents
using relational databases. ACM Transactions on Internet Tech-
nology (TOIT) 1 (1), 110-141.

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohmann, G., 2001.
On supporting containment queries in relational database
management systems. In: Proceedings of 2001 ACM SIGMOD
International Conference on Management of Data. pp. 425-
436.

http://aitrc.kaist.ac.kr/english/index.html
http://deluxe.reget.com/en/
http://www.tenmax.com/teleport/pro/home.htm
http://www.tenmax.com/teleport/pro/home.htm
http://www.w3.org/XML/
http://www.xyleme.com/en/

	Efficient evaluation of linear path expressions on large-scale heterogeneous XML documents using information retrieval techniques
	Introduction
	Preliminaries
	XML document model
	XML query model

	Related Work
	Instance-level methods
	Schema-level methods
	XRel
	XParent

	XIR-Linear storage structures
	XIR-Linear query processing algorithms
	Performance evaluation
	Experimental setup
	Databases
	Queries
	Computing environment

	Experimental results

	Conclusions
	References

