
Toward a Query Language on Simulation Mesh Data:
an Object-oriented Approach

Byung S. Lee, Robert R. Snapp
Department of Computer Science

University of Vermont
Burlington, Vermont, U.S.A.
{bslee, snap}@cs.uvm.edu

Ron Musick
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, California, U.S.A.
(Currently with Ikuni, Inc.) musick@ikuni.com

Abstract

As simulation is gaining popularity as inexpensive means
of experimentation in diverse fields of industry and govern-
ment, the attention to the data generated by scientific sim-
ulation is also increasing. Scientific simulation generates
mesh data, i.e., data configured in a grid structure, in a se-
quence of time steps. Its model is complex – understanding it
involves mathematical topology and geometry in addition to
fields (in the relational sense). Moreover, there is no query
language developed on mesh data at all. These are what we
address in this paper. We develop a comprehensive model
of mesh data in an object-oriented manner, propose a set
of primitive algebraic operators, show their object-oriented
implementation, and demonstrate that the well-known ob-
ject query language ODMG OQL is powerful enough to ex-
press queries on mesh data, whether the queries are on mesh
topology, geometry, fields, or combination of them. Finally,
we discuss some physical implementation issues pertinent to
executing queries efficiently.

1 Introduction

Simulation is a cost-effective way of conducting a test
without actually building a product, and has been in use
in various fields including physical science, defense experi-
ment, engineering design, medical imaging, oil exploration,
and weather forecasting. Many scientific and engineering
simulation data are produced in a mesh data structure, such
as NetCDF [1], HDF [2], and SILO [3]. Scientists are pro-
ducing simulation data in the size of tera-byte order, but have
very limited tools available for exploring and querying the
produced data. There are visualization tools [4, 5] available
today, which provide a few fixed forms of primitive query
operations such as finding points, displaying iso-surfaces, or
displaying orthogonal slices. However, users need a more
powerful query facility that will enable them to interactively

search the simulated mesh data in an ad hoc manner. There
has been some similar work done in other context to address
declarative, ad hoc query languages [7, 8]. However, there
is none well accepted as a mesh data query language in the
scientific computing community yet.

The purpose of this paper is to establish an object-oriented
framework for queries on mesh data, and propose its data
model and query language. More specifically, we demon-
strate that a model of mesh data can be built using object-
oriented data structure and operations, thus we can naturally
choose to use ODMG (Object Data Management Group)
OQL [6] as the query language. In addition, we catego-
rize queries on mesh data into topology queries, geometry
queries, and field queries, and present examples of proba-
ble queries for each category. From the operations defined in
these three categories, we propose a base set of algebraic op-
erators on mesh data and the associated notion of complete-
ness, and demonstrate that other operators can be derived
from those base set operators either algebraically or com-
putationally. Lastly, because a query language is not useful
unless it can be executed efficiently, we discuss our consid-
erations for improving the efficiency of executing queries on
mesh data.

We claim the following points as our contributions made
through this paper. First, we developed an object-oriented
model of mesh data, and showed an implementation of mesh
data structure and operations on it as C++ classes. Secondly,
we demonstrated that OQL was sufficient to express all prob-
able queries on mesh data, where each probable query exem-
plifies operations on mesh data. Thirdly, we discussed effi-
ciency considerations in implementing the query language,
such as adding collection extents, clustering, and indexing.

This paper is organized as follows. Following this in-
troduction, we first give an overview of simulation mesh
data in Section 2, and describe its object-oriented model in
Section 3. Then in Section 4 we demonstrate that OQL is ad-
equate enough to express queries on mesh data, and present
our query implementation considerations in Section 5. Fi-

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

nally, summary and further work follow in Section 6.

2 Overview of Simulation Mesh Data

In this section, we give a concise description of the con-
cepts and characteristics of simulation mesh data, and illus-
trate it with an example. We can understand mesh data as a
discrete representation of continuous data, exhibiting a grid
structure. Scientific and engineering simulation typically
generates mesh data in a sequence of time steps as the re-
sult of solving partial differential equations. As mentioned
in Introduction, the application of simulation mesh data is
numerous, predominantly in science and engineering. Sim-
ulation mesh data can be categorized based on the following
characteristics. (See [9] for a more comprehensive discus-
sion.)

Regularity – Mesh data may be regular or irregular de-
pending on the geometric pattern of the points for which
values are computed. We can distinguish between spatial
regularity and temporal regularity. Spatially regular mesh
data has data values computed at “a regular grid or some
other geometric structure” [9]. Temporally regular mesh
data has data values computed at regular time intervals. Ir-
regular mesh data requires that the spatial or temporal coor-
dinates must be stored together with the computed values.
In contrast, regular mesh data allows the coordinates to be
calculated, hence not stored.

Time-variation – Mesh data may be time-invariant or
time-varying depending on the variation of the geometric
coordinates of points over time. Time-varying mesh is
very common in simulations of dynamic processes, such
as deforming an artifact or changing natural phenomenon.
Examples are simulating a car crash, bending a rod, or
weather change. Unlike time-invariant mesh data, time-
varying mesh data requires that the neighborhood relation-
ships (i.e., topology) of mesh grid points must be stored in
addition to the coordinates (i.e., geometry) of points so that
points whose coordinates change over time can be traced at
different time points.

Density – Mesh data may be dense to a varying degree
depending on how many mesh points are empty, that is, have
no data associated with them. For example, a simulation of
air turbulence would have field values (e.g., velocity, orienta-
tion) at every point, therefore dense. By contrast, simulation
of particle collision would have field values at only a small
number of points, therefore sparse. [9]

Figure 1 shows an example of mesh data generated by
simulation of a can being crushed against a wall. It shows a
snapshot taken at the 8th time step in a sequence of 44 sim-
ulation steps 0 through 43. The crushing can data is stored
in a four dimensional Euclidean space defined by spatial
variables x, y, z and time step. Its geometrical structure at
each time step is lying on a cylindrical coordinate system,
and its topological structure is a hexahedral grid. There are

Figure 1. Crushing can mesh data

ten field variables – displx, disply, displz, velx, vely, velz,
accx, accy, accz, and eqps. “Displ”, “vel”, and “eqps” de-
note “displacement”, “velocity”, and “acceleration”, respec-
tively. Each has components in x, y, and z directions. The
last field variable “eqps” denotes “equivalent plastic strain”,
which is a measurement of strain or stress on the can surface.
All fields except “eqps” are vertex-centered (i.e., defined at a
mesh vertex) whereas “eqps” is zone-centered. In this three
dimensional space defined at each time step, a zone corre-
sponds to a volume. A zone corresponds to a face in a two
dimensional space. The value of a zone-centered field is cal-
culated by interpolating the values of the fields at adjacent
vertices.

3 Object-oriented Model of Simulation Mesh
Data

A rigorous model of mesh data requires sound mathemat-
ical and physical theories (such as “sheaf data model” [10]
based on fiber bundles [11]), and involves formal models
of mesh fields, mesh topology, and mesh geometry. In this
section, we present a rather informal model that adequately
supports our object-oriented query language. In other words,
we present a model that includes what we deem a complete
set of primitive operators on mesh fields, mesh topology,
and mesh geometry without necessarily relying on a formal
theory as in [10]. More specifically, we identify probable
query types for each of the three operation categories, and
propose a data structure and operators on the data structure.
Empirically we observed that the operators are sufficient to
support any query on mesh data that can be answered using
algorithmic computation. We also present probable queries
that combine two or three categories of the operations. In

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

addition, we propose a base set of operations with which we
can retrieve any information from mesh that does not require
programming.

3.1 Topological operations

Consider the following probable query types that use op-
erations on mesh topology:

T-A Find all mesh elements on the boundary of mesh.

T-B Find all mesh elements that are bounded by other mesh
elements (at a lower level). – This is called an “adja-
cency query.”

T-C Find all mesh elements of certain topological charac-
teristics (e.g., tetrahedral volumes).

where the mesh elements mentioned above are one of ver-
tices, edges, faces, and volumes. We propose a topologi-
cal data structure based on the data structure used in com-
puter graphics [12], as well as operations that can be used
to express all these queries, as follows. The data structure
is a mesh topology graph G as shown in Figure 2. If a
mesh consists of two or more submeshes, G is defined as
{Gi |i = 1, 2, · · ·} where each Gi is the topology graph of a
submesh. The topology graph Gi of a submesh is defined as
Gi = {< Ei, Li >} where Ei denotes a set of submesh ele-
ments, and Li denotes a set of parent-child links between the
members of Ei . Each level l of the graph contains a set El

i

of homogeneous elements. For example, for a sequence of
meshes generated in a 3-dimensional space, level 0 contains
mesh vertices, level 1 contains edges, level 2 faces, level 3
volumes, and level 4 hyper-volumes. In Figure 2 a hyper-
volume is shown as a time sequence of volumes. Generically,
we call a mesh element at level l an l-dimensional volume. A
mesh element at level l has as its components mesh elements
at level l − 1, for l = 1, 2, 3, 4. Conversely, a mesh element
at level l is a component of one or more mesh elements at
level l + 1 for l = 0, 1, 2, 3. We define a k-dimensional
mesh as a mesh whose mesh element at the highest level is
a k + 1-dimensional volume, which is a time sequence of
k-dimensional volumes. In theory, the maximum level of
dimension can be an arbitrary positive integer.

As to the operators, let E denote a set of mesh elements,
and let parent(e, e′) denote a predicate “e is a parent of e′”,
then, we define the following topological operators. (The
operators marked “derived” can be derived from the ones
marked “primitive”. Due to the limit on space, we omit the
verification of the derivability.

• e.Parents() = {e′ ∈ E|parent(e′, e)} [primitive]

• e.Children() = {e′ ∈ E|parent(e, e′)} [primitive]

• e.Siblings() = {e′ ∈ E|∃p(e′ �= e ∧ parent(p, e) ∧
parent(p, e′))} [derived]

vertices

edges

faces

volumes

hyper-volumes

Mesh elementsDimension

0

1

2

3

4

vertex

edge

face

3D volume

a) Mesh elements

b) Mesh topology graph

t = t1 t = t2

Figure 2. Mesh topology graph of a 3-
dimensional mesh

• e.Mates() = {e′ ∈ E|∃c(e′ �= e ∧ parent(e, c) ∧
parent(e′, c))} [derived]

For example, edg.Parents() returns the faces that are de-
limited by an edge edg; edg.Children() returns the vertices
that delimit the edge edg; edg.Siblings() returns the edges
that delimit the same face; and edg.Mates() returns the edges
that share the same vertex that delimits them.

3.2 Geometrical operations

Probable query types that need operations on mesh ge-
ometry are:

G-A Find the coordinates of mesh vertices.

G-B Find the mesh vertex closest to a given point.

Note that geometrical operations are applied to mesh ver-
tices only. We propose a vertex coordinate set as the data
structure, which is defined as N = {< n, X >} where n

denotes a vertex and X denotes a vector representation of
the coordinate X =< x0, x1, · · · , xk > of a vertex n in a k-
dimensional mesh. For example, for a 4-dimensional mesh,
X = vector(t, x, y, z) where t denotes a simulation time step.

As to the operators, we propose the following ones:

• n.Coordinate() returns the vector coordinate of a mesh
vertex n. [primitive]

• Given a set N of mesh vertices,
N .NearestVertex(&m(vector<double>&,

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

vector<double>&), Xc) returns a vertex n clos-
est to a reference point at coordinate Xc among all
elements of N , where the distance between Xc and the
coordinate Xj of a vertex nj ∈ N is calculated using
a distance metric function m as m(Xc, Xj). Note that
Xj = nj .Coordinate(). [derived]

An example of NearestVertex is NearestVertex(&sumsq(
vector<double>&, vector<double>&), vector(30, 2,3, 1.5,
7.6)) where the second argument is the vector representa-
tion of a reference point coordinate, and sumsq (“sum of
squares”) is a distance metric between the reference point co-
ordinate and the coordinateXj of a vertexnj . In this case, for
a given vertex at coordinate Xj =< tj , xj , yj , zj >, its dis-
tance to the reference point is calculated as sqsum(Xc, Xj)
= (tj − 30)2 + (xj − 2.3)2 + (yj − 1.5)2 + (zj − 7.6)2.

3.3 Field operations

Probable query types that need operations on mesh field
variables are:

F-A Find the values of field variables of a mesh element.

F-B Find the set of mesh elements that satisfy a predicate
on the values of field variables.

where mesh elements are one of mesh vertices, edges, faces,
and volumes. For a data structure we propose a feature
vector set defined as F = {< e, F >} where e denotes a
mesh element and F denotes a vector representation of field
variables of the mesh element e. The proposed operators
are:

• e.Fields() returns the values of a field vector F defined
at a mesh element e. This operation is analogous to
the relational project operator, which can be written as
� F e. [primitive]

• Given a set E of mesh elements, E.Elements(P(F))
returns a subset of E whose field vector F satisfies a
predicate condition P on it. This operation is analogous
to the relational select operator, which can be written
as σ

P(F)
E. [derived]

For example, given a set E of mesh elements at a particu-
lar level, E.Elements(“temp > 13”) returns a set of mesh
elements whose field variable temp is greater than 13.

3.4 Combined operations on mesh data structure

Consolidated from the data structures for the three cate-
gories of mesh operations, the entire data structure of each
disjoint mesh is defined as an ordered triplet < G, N , F >

where G is a mesh topology graph, N is a vertex coordinate

set, and F is a feature vector set. We give here some exam-
ples of query types that use a combination of two or more
categories of mesh operations. (In the following examples,
the symbols T, G, F in square brackets denote topological,
geometrical, and field operations, respectively, that are used
by the corresponding query.)

C-A Find the coordinates of mesh vertices delimiting a
mesh element. [TG]

C-B Find mesh volumes containing a point. [TG]

C-C Find the values of field variables of all mesh vertices
in a range of spatial coordinates. [GF]

C-D Find all mesh elements on the contact interface be-
tween two meshes. [FT]

C-E Compare the value of a field variable at a mesh element
and an aggregate value of a field variable at neighboring
mesh elements. [FT]

C-F Find an aggregate value of a geometric quantity at mesh
elements whose field variables satisfy a predicate con-
dition. [TGF]

3.5 Base set of mesh operations

We propose five operations {Dimension, Parents, Chil-
dren, Fields, Coordinate} as the base set (B) of algebraic
operations on mesh data {< G, N , F >}. A possible im-
plementation of the mesh data structure and the base set of
operations is shown below in C++ syntax.

/* Forward declarations */
class Element;
class Vertex;
/* Data structures */
typedef pair<Element*, Element*> Link
pair<list<Element*>, list<Link>> mtg;
typedef vector<double> X
set<pair<Vertex*, X>> vcs;
typedef vector<string> F
set<pair<Element*, F>> fvs;
typedef vector<mtg, vcs, fvs> Submesh
Submesh smesh;
set<Submesh> mesh;
/* Operations */
class Element {

short dimension;
vector<double> fields;
list<Element*> parents;
list<Element*> children;

public:
short Dimension();
vector<double> Fields();
list<Element*> Parents();
list<Element*> Children();

}
class Vertex: Element {

vector<double> coordinate;
public:

vector<double> Coordinate();
}

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

One interesting issue here is to assess the “complete-
ness” of our data model denoted by the quadruple {<
G, N , F , B >}. We use structural duplicability as the com-
pleteness criterion, defined as follows:

Definition 3.1 (Completeness of a data model) A data
model < S, O > defined by its data structure S and a set of
algebraic operators O is said to be complete if and only if S
and O are necessary and sufficient to duplicate the data. In
this case, we also say O is algebraically complete in terms
of the structural duplicability of S.

The following assertion is self-evident:

Axiom 3.1 (Duplicability of simulation mesh data)
Simulation mesh data is completely duplicable given
the mesh data structure < G, N , F > and the base set
operators B.

Hence, our data model denoted by the quadruple <

G, N , F , B > is complete.
Although algebraically complete in terms of structural

duplicability, the base set of operators alone is not enough
to retrieve arbitrary information out of mesh data. This is
more evident if the computation requires control flow of op-
erations, such as conditional branching (i.e., if−then−else)
or iteration (e.g., for loop). For instance, we need a more ex-
pressive language in order to implement operations marked
“derived” in Sections 3.1 through 3.3. Thus, we augment
the base set operators with computational operators avail-
able from a programming language (e.g., C++, Java) or an
extended database language (e.g., PL/SQL, Transact-SQL).
We do not show the implementation of the derived operators
here due to the limit on space.

4 Querying Simulation Mesh Data

In this section, we show examples of creating the data
structure presented in Section 3 and write in OQL the queries
presented in the same section. We found OQL sufficient
thanks to it extensibility of incorporating user-defined meth-
ods in a query statement.

4.1 Creating mesh data structure

The three structural components of mesh data – topol-
ogy graph, vertex coordinate set, and feature vector set –
can be implemented as abstract data types, whose schema
are shown in ODMG Object Definition Language (ODL)
syntax below. This schema is an ODMG ODL version of
the structure shown in C++ in Section 3.5. (In Section 5,
we will consider adding classes 3DVolume, Face, and Edge,
and their associated extents for an efficiency reason.)

class Element (extent elements) {
attribute short dimension;
attribute list<double> fields;
relationship list<Element> parents

inverse Element::children;
relationship list<Element> children

inverse Element::parents;
short Dimension();
list<double> Fields();
list<Element> Parents();
list<Element> Children();

};
class Vertex extends Element

(extent vertices) {
attribute list<double> coordinate; // <t, x, y, z>
list<double> Coordinate();

};

4.2 Querying mesh data structure

In this section we will first explain one intuitive way of
handling time steps in simulation mesh data and, based on
that, demonstrate the suitability of OQL as the query lan-
guage on simulation mesh data. For this, we use examples
for each of the probable queries listed in Sections 3.1 through
3.4.

4.2.1 Handling time steps

In a d-dimensional space defined by a Cartesian coordinate
system It × Rx1 × Rx2 · · ·× Rxd , time step is denoted as the
first component of the coordinate of a mesh element. Thus,
what we recognize as a sequence of d-dimensional volumes
across time steps is in essence one d+1-dimensional volume
when we take the time step into the coordinate system. Con-
versely, a d-dimensional volume is decomposed into a series
of d-1-dimensional volumes grouped by their time steps. In
other words, all d-dimensional mesh volumes that share the
same time step belong to the same time instance group. Note
that we can check the time step of any mesh element x by
applying firstChild(x) repeatedly until we reach a vertex, as
shown below. For example, if v is a 3-dimensional mesh
volume, we check the time step of v by checking the time
step of v’s first face’s first edge’s first vertex.

define firstChild(x) first(x.Children())

define timeStep(n) n.Coordinate()[0:0]
define timeStep(e)

firstChild(e).Coordinate()[0:0]
define timeStep(f) firstChild(firstChild(f)).

Coordinate()[0:0]
define timeStep(v) firstChild(firstChild(

firstChild(v))).Coordinate()[0:0]

TimeStep function invokes the children operator, which
is a topological operator. However, we exclude timeStep
from consideration when classifying a query category. In
fact, using a composite object index (that will be discussed
in Section 5) will obviate the need for any topological nav-
igation that follows a path from a mesh element down to a
mesh vertex.

4.2.2 Examples of queries on topology only

In Section 3.1, we proposed three types of probable queries
on mesh topology. We show the corresponding examples

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

here.

T-A: Given a 3-dimensional mesh, find all mesh faces on
the boundary of the mesh at time step 13. (That is, faces that
belong to only one volume.)

select f from elements f
where f.Dimension() = 2 and timeStep(f) = 13

and count(f.Parents()) = 1;

T-B: Given a 3-dimensional mesh, find all mesh volumes
bounded by vertices Vtx1, Vtx2, Vtx3, Vtx4, Vtx5, Vtx6, Vtx7,
and Vtx8 at each time step 3 to 5. (Note that vertices are two
levels below volumes in a mesh topology graph.)

select v from elements v
where v.Dimension() = 3 and timeStep(v) >= 3
and timeStep(v) <= 5 and set(Vtx1, Vtx2, Vtx3,

Vtx4, Vtx5, Vtx6, Vtx7, Vtx8) <=
distinct(select n from v.Children() f,

f.Children() e, e.Children() n)
group by timeStep(v);

T-C: Given a 3-dimensional mesh, find the number of all
tetrahedral volumes at time step 13.

select count(v) from elements v
where v.Dimension() = 3 and timeStep(v) = 13

and count(v.Children()) = 4;

4.2.3 Examples of queries on geometry only

In Section 3.2, we proposed two types of probable queries
on mesh geometry. Corresponding examples follow here.
Note that the mesh vertex Vtx is defined at a particular time
step.

G-A: Given an arbitrary dimensional mesh, find the co-
ordinate of a mesh vertex Vtx.

Vtx.Coordinate();

G-B: Given a 3-dimensional mesh, find the vertex closest
to a given point at coordinate < 10.2, 15.3, 11.7 > at time
step 18 using a Euclidean distance metric in a 4-dimensional
space It × Rx × Ry × Rz.

vertices.NearestVertex(&Euclidean(vector<double>&,
vector<double>&), vector(18, 10.2, 15.3, 11.7));

where vertices is the extent of class Vertex, “vector” is a
computational operator that creates a vector given its ele-
ments, and NearestVertex is a computationally derived op-
erator whose definition can be readily written using the base
set operator Coordinate. Due to limited space, we omit the
code in this paper.

4.2.4 Examples of queries on fields only

In this section, we show two types of queries on mesh fields
only, shown in Section 3.3.

F-A: Given an arbitrary dimensional mesh, find the val-
ues of field variables “temperature” and “pressure” of a

mesh vertex Vtx. Assume we know that “temperature” and
“pressure” are the 3rd and 4th field variables of a mesh
vertex, respectively. Then, the query is written as follows.
(Note that the vertex Vtx is defined at a particular time step.)

Vtx.Fields()[3:4];

F-B: Given an arbitrary dimensional mesh, find the set of
mesh vertices whose field variable “temperature” > 300.0
and field variable “pressure” > 500.0 at time step 19. Given
the extent “vertices” of class Vertex, we can write the query
using the field operator Elements as follows:

vertices.Elements(‘‘temperature > 300.0 and
pressure > 500.0’’) intersect

(select n from vertices n where timeStep(n)=19);

Obviously, the query is inefficient. If we know the order
of the field variables, we can write the same query using
the Fields operator as follows, assuming that “temperature”
and “pressure” are the 3rd and 4th field variables of a mesh
vertex, respectively.

select n from vertices n
where timeStep(n)=19 and n.Fields()[3:3] > 300.0

and n.Fields()[4:4] > 500.0;

4.2.5 Examples of queries on topology and geometry
combined

In Section 3.4, two query types require a combination of
topology and geometry to answer it.

C-A: Given a 3-dimensional mesh, find all vertex coordi-
nates of a mesh volume Vol. Note that the mesh volume Vol
is defined at a particular time step.

select distinct n.Coordinate() from
Vol.Children() f, f.Children() e, e.Children() n;

C-B: Given a 3-dimensional mesh, find all mesh volumes
containing a point at coordinate < x = 13.0, y = 25.3, z =
17.2> at time step 15.At each time step, there exists only one
such a mesh volume unless the coordinate of the given point
coincides with a vertex coordinate, which hardly happens in
floating-point calculations. Thus, the query can be written
as:

select v from elements v, v.Children() f,
f.Children() e, e.Children() n, n.Coordinate() c
where v.Dimension() = 3 and timeStep(n) = 15

and v.contains(13.0, 25.3, 17.2);

In this query, we introduced a new operator “contains.”
When applied to a 3-dimensional volume with a given 3-
dimensional coordinate X =< x, y, z >, “contains” returns
a Boolean constant TRUE if and only if the coordinate is
within the volume, and FALSE otherwise. Implementing
the operator “contains” is feasible with a computational ge-
ometry approach. For example, if we consider an imaginary
point po outside of the mesh boundary, a point pi is inside
a volume if and only if any straight line connecting the two
points pi and po crosses an odd number of faces.

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

4.2.6 Examples of queries on geometry and fields com-
bined

There is one type of query in Section 3.4 that is on a
combination of mesh geometry and fields.

C-C: Given an arbitrary dimensional mesh, find the val-
ues of field variables of all mesh vertices in a spatial range
of 100.0 < x < 200.0, 200.0 < y < 400.0, and 50.0 < z <
70.0 in the time steps 15 through 20. Note that c[0:0] in the
following query can be replaced by timeStep(n).

select n.Fields()
from vertices n, n.Coordinate() c
where c[0:0] >= 15 and c[0:0] <= 20

and c[1:1] > 100.0 and c[1:1] < 200.0
and c[2:2] > 200.0 and c[2:2] < 400.0
and c[3:3] > 50.0 and c[3:3] < 70.0;

4.2.7 Examples of queries on fields and topology com-
bined

In Section 3.4, there are two types of queries that are on
both fields and topology.

C-D: Given two 3-dimensional meshes, find all mesh
faces on the contact interface between the two meshes at time
step 7. Assume their materials distinguish the two mesh data.
Then, we have only to check if there are faces that belong
to two volumes with two distinct values of field “material”
(e.g., glass and water). Assume “material” is the 4th field of
a mesh volume.

select f from elements f, f.Parents() v
where f.Dimension() = 2 and timeStep(f) = 7

and count(distinct v.Fields()[4:4]) = 2;

C-E: Given an arbitrary dimensional mesh, calculate the
difference between the value of a field variable “tempera-
ture” at a vertex and the average of field values at its neigh-
boring vertices at time step 13. Assume “temperature” is
the 3rd field variable of a vertex. Note that neighboring ver-
tices are those that share the same parent (i.e., edge) with
the given vertex. Then, the query can be written as follows,
where the inner select statement retrieves all vertices neigh-
boring a given vertex n.

select n.Fields()[3:3] - avg(n2.Fields()[3:3])
from vertices n,

(select n1 from vertices n1
where exists (

select e from elements
where e.Dimension() = 1 and n1 != n

and e in n1.Parents()
and e in n.Parents())) n2

where timeStep(n) = 13;

4.2.8 Examples of queries on topology, geometry, and
fields combined

We see in Section 3.4 one query type that combines all three
categories of mesh operations.

C-F: Given a 2-dimensional mesh, find the total surface
area of connected mesh faces at time step 10 such that the
value of a field variable “pressure” is higher than 90%. For
a 2-dimensional mesh, a face that is connected to another
face is the one that has one or more edges that have faces on
both sides. Assuming “pressure” is the 4th field of a mesh
face, we can write the query as follows assuming that there
exists a function “area” which calculates the geometric area
of a mesh face.

select sum(area(f)) from elements f
where f.Dimension() = 2 and timeStep(f) = 10

and exists (select e from f.Children() e
where count(e.Parents()) > 1)

and f.Fields()[4:4] > 90;

5 Implementation Considerations

We are currently implementing queries on lambda-DB
[15], an experimental object-oriented DBMS. It creates mesh
elements out of a Silo [3] data file, and visualize query results
on MeshTV[4], a visualization tool.

For the rest of this section, we discuss some ideas for
efficiently executing queries on the mesh data structure
< G, N , F > described in Section 3. First, we can add
new classes 3DVolume, Face, Edge, as well as their asso-
ciated extents 3dvolumes, faces, edges to the existing ones.
This will enable a query processor to search the concerned
extent directly without performing a selection from the ex-
tent elements based on the attribute “dimension.” As a result,
a query on mesh elements at a particular dimension, for ex-
ample faces, can be written as:
select f from faces f where . . .

instead of
select e from elements e

where e.Dimension() = 2 and . . .

An alternative would be to create a hash index on the attribute
“dimension” of Element extent for a faster retrieval of mesh
volumes at a particular dimension.

Clustering will obviously improve the performance of
certain queries provided that we know what are frequently
executed queries. Given our object-oriented model of mesh
data, clustering mesh elements is no different than clustering
objects in an object-oriented database [13]. One strategy,
which will be neutral to different query access patterns, is
to cluster all the mesh elements that belong to the same
level. Alternatively, clustering can be done by storing each
mesh element (e.g., a 3-dimensional volume) together with
all its descendent in a given mesh topology graph. Certainly,
this brings the issue of handling shared child elements. A
conventional resolution is to cluster a child element with one
parent and maintain links between the child element and the
other parent elements.

As to indexing mesh elements, we consider a two-tier
index on mesh data. As mentioned in Section 4.2.1,
we can model a d-dimensional mesh volume as a time
series of d-1-dimensional mesh volumes. So, an index

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

on a time series of mesh data is configured in two tiers
– the upper tier on time step, and the lower tier on field
variables or geometrical coordinates. Analysis of the
queries shown in Sections 4.2.2 through 4.2.8 leads us to
create lower tier indexes on the values of the following
frequently accessed attributes: attribute “dimension” of
class Element for executing the method Dimension(), and
attribute “fields” (as a vector or components) of class
Element for executing the method Fields(). In addition,
retrieving the first component of the coordinate of a mesh
vertex – used in timeStep(x) of a mesh element x – will
benefit from an index on a composite object rooted by
x, which is essentially the same as the nested attribute
index proposed by Bertino and Kim [14]. For example,
given a condition “timeStep(v)” where v is a mesh volume,
we create an index on mesh volume v for an index key
“firstChild(firstChild(firstChild(v))).Coordinate()[0:0]”.
One potential problem of a nested attribute index is the
complexity of updating the index. However, it is not our
concern because simulation mesh data is not subject to
update. The data may be entirely replaced, but is not
modified.

6 Summary and Further Work

The structure and operations of mesh data are far more
complex than conventional data used in business applica-
tions, such as relational data. Mesh data is used extensively
in scientific applications and requires the understanding of
mesh topology, mesh geometry, and mesh fields. In this pa-
per, we developed an object-oriented model of mesh data
that incorporated all three aspects, proposed a base set of
primitive algebraic operators on mesh data, and built an ex-
emplary implementation of the mesh data model in C++. In
addition, we demonstrated that the ODMG object query lan-
guage (OQL) was suitable to express all probable queries we
identified through investigation and interaction with scien-
tists. Lastly, we presented our ideas of executing the queries
efficiently on the proposed mesh data structure.

In a project [16, 17] that provides a background of this
work, an object-relational database management system
(ORDBMS) is in use as the platform. Therefore, we de-
sire to implement OQL on an ORDBMS in such a way that
an OQL statement is translated to a script of extended SQL
statements (e.g, Oracle PL/SQL) and executed on the OR-
DBMS. This remains as our further work. Another possible
future work is to refine the query language based on the sheaf
data model [10] mentioned in Section 3, which is based on
a solid mathematical theory.

Acknowledgment

This research was partially supported by University of
Vermont UCRS Faculty Research Grant No. PSCI00-1. For

LLNL authors, work was performed under the auspices of
the U.S. DOE by LLNL under contract No. W-7405-ENG-
48.

References

[1] http://www.unidata.ucar.edu/packages/netcdf/, UniData
NetCDF.

[2] http://hdf.ncsa.uiuc.edu/, The NCSA HDF Home Page.

[3] http://www.llnl.gov/meshtv/manuals.html, Silo Documenta-
tion Version 4.0.

[4] http://www.llnl.gov/bdiv/meshtv/, MeshTV: Scientific Visu-
alization and Graphical Analysis Software.

[5] http://www.atmos.uiuc.edu/envision/envision.html, ENVI-
SION: an Interactive System for the Management and Vi-
sualization of Large Geophysical Data Sets.

[6] R. Cattell, et al. (ed.), The Object Data Standard: ODMG
3.0, Morgan Kaufmann Publishers, January 2000.

[7] W. Wang, J.Yang, and R. Muntz, “STING:A Statistical Infor-
mation Grid Approach to Spatial Data Mining,” Proc. Conf.
VLDB, 1997, pp. 86-195.

[8] A. Bauer and W. Lehner, “The Cube-Query-Language (CQL)
for Multidimensional Statistical and Scientific Database Sys-
tems,” Proc. Conf. DASFAA, Melbourne, Australia, April 1-4,
1997, pp.263-272.

[9] A. Shoshani, F. Olken, and H. Wong, “Characteristics of Sci-
entific Databases,” Proc. Conf. VLDB, 1993, pp. 147-160.

[10] David M. Butler, “The Sheaf Data Model”, to be published.

[11] D. M. Butler, “A Visualization Model based on the Math-
ematics of Fiber Bundles,” Computers in Physics, Septem-
ber/October 1989, pp. 45-51.

[12] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Com-
puter Graphics: Principles and Practice in C (2nd edition),
Addison-Wesley, Reading, MA, 1996, pp. 473-476.

[13] P. Valduriez, S. Khoshafian,and G. Copeland, “Implemen-
tation Techniques of Complex Objects,” Proc. Conf. VLDB,
August 1986, pp. 101-109.

[14] E. Bertino and W. Kim, “Indexing Techniques for Queries on
Nested Objects,” IEEE TKDE, October 1989.

[15] http://lambda.uta.edu/lambda-DB/manual/, L. Fegaras,
lambda-DB, University of Texas at Arlington.

[16] B. Lee, R. Snapp, and R. Musick, Ad hoc Query Support for
Very Large Scientific Data: the Metadata Approach, Techni-
cal Report UCRL-JC-138481, Lawrence Livermore National
Laboratory, Livermore, California.

[17] R. Musick and T. Critchlow, “Practical Lessons in Support-
ing Large-Scale Computational Science,” ACM SIGMOD
Record, Vol. 28, No. 4, December 1999.

Proceedings of the Seventh International Conference on Database Systems for Advanced Applications (DASFAA �01)
0-7695-0996-7/01 $10.00 © 2001 IEEE

